Analytical solutions to a quasilinear differential equation related to the Lane–Emden equation of the second kind

2010 ◽  
Vol 109 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Robert A. Van Gorder
Author(s):  
P. S. Georgiou ◽  
S. N. Yaliraki ◽  
E. M. Drakakis ◽  
M. Barahona

We introduce a mathematical framework for the analysis of the input–output dynamics of externally driven memristors. We show that, under general assumptions, their dynamics comply with a Bernoulli differential equation and hence can be nonlinearly transformed into a formally solvable linear equation. The Bernoulli formalism, which applies to both charge- and flux-controlled memristors when either current or voltage driven, can, in some cases, lead to expressions of the output of the device as an explicit function of the input. We apply our framework to obtain analytical solutions of the i – v characteristics of the recently proposed model of the Hewlett–Packard memristor under three different drives without the need for numerical simulations. Our explicit solutions allow us to identify a dimensionless lumped parameter that combines device-specific parameters with properties of the input drive. This parameter governs the memristive behaviour of the device and, consequently, the amount of hysteresis in the i – v . We proceed further by defining formally a quantitative measure for the hysteresis of the device, for which we obtain explicit formulas in terms of the aforementioned parameter, and we discuss the applicability of the analysis for the design and analysis of memristor devices.


2012 ◽  
Vol 170-173 ◽  
pp. 37-40
Author(s):  
Bo Qian

In accordance with equilibrium differential equations and compatibility conditions of deformation, the partial differential equation of induced stress is achieved for elastic surrounding rocks of tunnels and chambers of round section. By method of the superposition principle, elastic analytical solutions of induced stress of surrounding rocks is derived from the partial differential equation, which is based on stress functions and boundary conditions.


Author(s):  
O. P. Bhutani ◽  
K. Vijayakumar

AbstractAfter formulating the alternate potential principle for the nonlinear differential equation corresponding to the generalised Emden-Fowler equation, the invariance identities of Rund [14] involving the Lagrangian and the generators of the infinitesimal Lie group are used for writing down the first integrals of the said equation via the Noether theorem. Further, for physical realisable forms of the parameters involved and through repeated application of invariance under the transformation obtained, a number of exact solutions are arrived at both for the Emden-Fowler equation and classical Emden equations. A comparative study with Bluman-Cole and scale-invariant techniques reveals quite a number of remarkable features of the techniques used here.


Entropy ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 885-902 ◽  
Author(s):  
Soheil Salahshour ◽  
Ali Ahmadian ◽  
Norazak Senu ◽  
Dumitru Baleanu ◽  
Praveen Agarwal

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah ◽  
M. Ali Akbar

We construct new analytical solutions of the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.


2021 ◽  
Vol 2 (2) ◽  
pp. 13-30
Author(s):  
Awais Younus ◽  
Muhammad Asif ◽  
Usama Atta ◽  
Tehmina Bashir ◽  
Thabet Abdeljawad

In this paper, we provide the generalization of two predefined concepts under the name fuzzy conformable differential equations. We solve the fuzzy conformable ordinary differential equations under the strongly generalized conformable derivative. For the order $\Psi$, we use two methods. The first technique is to resolve a fuzzy conformable differential equation into two systems of differential equations according to the two types of derivatives. The second method solves fuzzy conformable differential equations of order $\Psi$ by a variation of the constant formula. Moreover, we generalize our results to solve fuzzy conformable ordinary differential equations of a higher order. Further, we provide some examples in each section for the sake of demonstration of our results.


2018 ◽  
Vol 22 ◽  
pp. 01045 ◽  
Author(s):  
Mehmet Yavuz ◽  
Necati Özdemir

In this study, we have obtained analytical solutions of fractional Cauchy problem by using q-Homotopy Analysis Method (q-HAM) featuring conformable derivative. We have considered different situations according to the homogeneity and linearity of the fractional Cauchy differential equation. A detailed analysis of the results obtained in the study has been reported. According to the results, we have found out that our obtained solutions approach very speedily to the exact solutions.


Sign in / Sign up

Export Citation Format

Share Document