scholarly journals Quantitative measure of hysteresis for memristors through explicit dynamics

Author(s):  
P. S. Georgiou ◽  
S. N. Yaliraki ◽  
E. M. Drakakis ◽  
M. Barahona

We introduce a mathematical framework for the analysis of the input–output dynamics of externally driven memristors. We show that, under general assumptions, their dynamics comply with a Bernoulli differential equation and hence can be nonlinearly transformed into a formally solvable linear equation. The Bernoulli formalism, which applies to both charge- and flux-controlled memristors when either current or voltage driven, can, in some cases, lead to expressions of the output of the device as an explicit function of the input. We apply our framework to obtain analytical solutions of the i – v characteristics of the recently proposed model of the Hewlett–Packard memristor under three different drives without the need for numerical simulations. Our explicit solutions allow us to identify a dimensionless lumped parameter that combines device-specific parameters with properties of the input drive. This parameter governs the memristive behaviour of the device and, consequently, the amount of hysteresis in the i – v . We proceed further by defining formally a quantitative measure for the hysteresis of the device, for which we obtain explicit formulas in terms of the aforementioned parameter, and we discuss the applicability of the analysis for the design and analysis of memristor devices.

1997 ◽  
Vol 119 (3) ◽  
pp. 478-485 ◽  
Author(s):  
M. Goldfarb ◽  
N. Celanovic

A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for control applications requiring accurate position tracking performance. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of nonintuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. Bond graph terminology is incorporated to facilitate the energy-based formulation of the actuator model. The authors propose a new bond graph element, the generalized Maxwell resistive capacitor, as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


1974 ◽  
Vol 96 (3) ◽  
pp. 315-321 ◽  
Author(s):  
G. Jumarie

Sampled-data, nonlinear, distributed systems, which exhibit a structure similar to that of the standard closed loop with lumped parameter, are investigated from the viewpoint of their input-output stability. These systems are governed by operational equations involving discrete Laplace-Green kernels. Their feedback gains are bounded by upper and lower values which depend explicitly on the time and the distributed parameter. The main result is: an input-output stability theorem is given which applies both in L∞ (O, ∞) and L2 (O, ∞). This criterion, which may be considered as being an extension of the ≪circle criterion≫, involves the mean square value on the bounds of the feedback gain. Stability conditions for continuous systems are derived from this result. In the special case of systems with distributed periodical time-varying feedback gains, a stability criterion is given which applies in Marcinkiewicz space M2 (O, ∞). This result which involves the mean square value of the feedback gain is generally less restrictive than the L2 (O, ∞) stability criterion mentioned above.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamed S. Al-luhaibi

This paper presents the approximate analytical solutions to solve the nonlinear gas dynamics and coupled Burger’s equations with fractional time derivative. By using initial values, the explicit solutions of the equations are solved by using a reliable algorithm. Numerical results show that the new iterative method is easy to implement and accurate when applied to time-fractional partial differential equations.


2018 ◽  
Vol 8 (10) ◽  
pp. 1779 ◽  
Author(s):  
Xinnan Liu ◽  
Jianjun Wang ◽  
Weijie Li

This paper presents the dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator based on the linear piezo-elasticity theory. The solutions for two different kinds of piezoelectric stacks under external load were obtained using the displacement method. The effects of load frequency and load amplitude on the dynamic characteristics of the stacks were discussed. The analytical solutions were validated using the available experimental results in special cases. The proposed model is able not only to predict the output properties of the devices, but also to reflect the inner electrical and mechanical components, which is helpful for designing piezoelectric actuators and generators in a comprehensive manner.


2021 ◽  
Author(s):  
Vu Nguyen ◽  
Dervis Vural

In a complex community, species continuously adapt to each other. On rare occasions, the adaptation of a species can lead to the extinction of others, and even its own. ``Adaptive dynamics'' is the standard mathematical framework to describe evolutionary changes in community interactions, and in particular, predict adaptation driven extinction. Unfortunately, most authors implement the equations of adaptive dynamics through computer simulations, that require assuming a large number of questionable parameters and fitness functions. In this study we present analytical solutions to adaptive dynamics equations, thereby clarifying how outcomes depend on any computational input. We develop general formulas that predict equilibrium abundances over evolutionary time scales. Additionally, we predict which species will go extinct next, and when this will happen.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Mario Lefebvre

International audience A two-dimensional controlled stochastic process defined by a set of stochastic differential equations is considered. Contrary to the most frequent formulation, the control variables appear only in the infinitesimal variances of the process, rather than in the infinitesimal means. The differential game ends the first time the two controlled processes are equal or their difference is equal to a given constant. Explicit solutions to particular problems are obtained by making use of the method of similarity solutions to solve the appropriate partial differential equation. On considère un processus stochastique commandé bidimensionnel défini par un ensemble d'équations différentielles stochastiques. Contrairement à la formulation la plus fréquente, les variables de commande apparaissent dans les variances infinitésimales du processus, plutôt que dans les moyennes infinitésimales. Le jeu différentiel prend fin lorsque les deux processus sont égaux ou que leur différence est égale à une constante donnée. Des solutions explicites à des problèmes particuliers sont obtenues en utilisant la méthode des similitudes pour résoudre l'équation aux dérivées partielles appropriée.


2018 ◽  
Vol 29 (6) ◽  
pp. 763-771 ◽  
Author(s):  
Robert D. Phair

Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non–steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis.


2003 ◽  
Vol 48 (10) ◽  
pp. 63-70 ◽  
Author(s):  
A. Ostfeld ◽  
A. Pries

This paper describes the efforts and current achievements of developing a GIS based hydrological model for flow and contaminants transport within Lake Kinneret watershed. The proposed model is built of hydrological “input-output” physical response blocks for routing rainfall-runoff water quantity and quality in sub-watersheds, coupled further with a delineated GIS database. An illustrative example of the model capabilities is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document