Perturbation based analytical solutions of non‐Newtonian differential equation with heat and mass transportation between horizontal permeable channel

Author(s):  
Mubbashar Nazeer ◽  
M. Ijaz Khan ◽  
Adila Saleem ◽  
Yu‐Ming Chu ◽  
Seifedine Kadry ◽  
...  
Author(s):  
P. S. Georgiou ◽  
S. N. Yaliraki ◽  
E. M. Drakakis ◽  
M. Barahona

We introduce a mathematical framework for the analysis of the input–output dynamics of externally driven memristors. We show that, under general assumptions, their dynamics comply with a Bernoulli differential equation and hence can be nonlinearly transformed into a formally solvable linear equation. The Bernoulli formalism, which applies to both charge- and flux-controlled memristors when either current or voltage driven, can, in some cases, lead to expressions of the output of the device as an explicit function of the input. We apply our framework to obtain analytical solutions of the i – v characteristics of the recently proposed model of the Hewlett–Packard memristor under three different drives without the need for numerical simulations. Our explicit solutions allow us to identify a dimensionless lumped parameter that combines device-specific parameters with properties of the input drive. This parameter governs the memristive behaviour of the device and, consequently, the amount of hysteresis in the i – v . We proceed further by defining formally a quantitative measure for the hysteresis of the device, for which we obtain explicit formulas in terms of the aforementioned parameter, and we discuss the applicability of the analysis for the design and analysis of memristor devices.


2012 ◽  
Vol 170-173 ◽  
pp. 37-40
Author(s):  
Bo Qian

In accordance with equilibrium differential equations and compatibility conditions of deformation, the partial differential equation of induced stress is achieved for elastic surrounding rocks of tunnels and chambers of round section. By method of the superposition principle, elastic analytical solutions of induced stress of surrounding rocks is derived from the partial differential equation, which is based on stress functions and boundary conditions.


Entropy ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 885-902 ◽  
Author(s):  
Soheil Salahshour ◽  
Ali Ahmadian ◽  
Norazak Senu ◽  
Dumitru Baleanu ◽  
Praveen Agarwal

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah ◽  
M. Ali Akbar

We construct new analytical solutions of the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.


2021 ◽  
Vol 2 (2) ◽  
pp. 13-30
Author(s):  
Awais Younus ◽  
Muhammad Asif ◽  
Usama Atta ◽  
Tehmina Bashir ◽  
Thabet Abdeljawad

In this paper, we provide the generalization of two predefined concepts under the name fuzzy conformable differential equations. We solve the fuzzy conformable ordinary differential equations under the strongly generalized conformable derivative. For the order $\Psi$, we use two methods. The first technique is to resolve a fuzzy conformable differential equation into two systems of differential equations according to the two types of derivatives. The second method solves fuzzy conformable differential equations of order $\Psi$ by a variation of the constant formula. Moreover, we generalize our results to solve fuzzy conformable ordinary differential equations of a higher order. Further, we provide some examples in each section for the sake of demonstration of our results.


2018 ◽  
Vol 22 ◽  
pp. 01045 ◽  
Author(s):  
Mehmet Yavuz ◽  
Necati Özdemir

In this study, we have obtained analytical solutions of fractional Cauchy problem by using q-Homotopy Analysis Method (q-HAM) featuring conformable derivative. We have considered different situations according to the homogeneity and linearity of the fractional Cauchy differential equation. A detailed analysis of the results obtained in the study has been reported. According to the results, we have found out that our obtained solutions approach very speedily to the exact solutions.


1970 ◽  
Vol 1 (7) ◽  
pp. 325-326
Author(s):  
R. Van der Borght

In the past a number of analytical solutions have been found to the differential equation for small radial adiabatic oscillations of stars, with the aid of a series expansion of the form leading to a two-term recurrence relation.


Author(s):  
G. J. Tsamasphyros ◽  
Th. K. Papathanassiou ◽  
S. I. Markolefas

In this paper, we derive some analytical solutions of the Kamal cure rate differential equation. The Kamal model is a first order quasilinear ordinary differential equation, describing the progress of the curing reaction of several thermosetting polymers. All the examined cases refer to isothermal curing processes. The solutions obtained in this paper are all of implicit form. The derived solutions are applied to a repair technique based on the adhesive bonding of polymer matrix composite patches onto damaged or corroded areas. Critical duration times of realistic cure cycles corresponding to composite patch repair are estimated. The practical importance of the proposed analytic solutions is demonstrated through the presented engineering application.


Sign in / Sign up

Export Citation Format

Share Document