scholarly journals Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio‐leather

Cellulose ◽  
2021 ◽  
Vol 28 (5) ◽  
pp. 3183-3200
Author(s):  
Hyunjin Kim ◽  
Ji Eun Song ◽  
Hye Rim Kim

AbstractThis study aimed to develop eco-friendly bacterial cellulose (BC) bio-leather with improved durability using plant-based proteins, namely soy protein isolate (SPI) and mushroom protein (MP), which were physically entrapped inside the BC, respectively. The amounts of the plant-based proteins were determined by evaluating the tensile strength of BC bio-leather, and were found to be 20 wt% and 50 wt% of BC for SPI and MP, respectively. The enhanced properties of mechanical strength and durability of BC bio-leather were measured in terms of changes in water resistance, tensile strength, flexibility, crease recovery, and dimensional stability. The durability of BC was improved after the entrapment of proteins, and moreover, the durability of BC entrapped with plant-based proteins was further improved by the addition of glycerol. Especially, BC entrapped with MP and glycerol had better water resistance, tensile strength, flexibility, and crease recovery compared to cowhide leather. The chemical and physical structures of BC bio-leathers were studied using Fourier transform-infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy analyses. From the results, it was confirmed that BC entrapped with MP and glycerol could be a suitable leather substitute.

2017 ◽  
Vol 138 ◽  
pp. 124-133 ◽  
Author(s):  
Xiaobing Liu ◽  
Hamid Souzandeh ◽  
Yudong Zheng ◽  
Yajie Xie ◽  
Wei-Hong Zhong ◽  
...  

2014 ◽  
Vol 716-717 ◽  
pp. 28-31
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The effect of FA and OFA on performances of the soybean protein-isolate/chitosan composite films was evaluated. The FA and OFA enhanced the tensile strength and thermal stability of the composite films significantly, while they reduced the water vapor permeability to 60.3 % and 72.8 % of the control respectively. Moreover, the OFA was more effective to enhance the tensile strength of the composite films than the FA.


2012 ◽  
Vol 501 ◽  
pp. 208-214 ◽  
Author(s):  
Qing Hong Fang ◽  
Dan Zhou ◽  
Wen Chi Han ◽  
Yu Gao ◽  
Na Wang ◽  
...  

Soy protein has been considered as a kind of natural polymer and an ecological material that was widely used in many fields such as food industry. In this paper, the soy protein isolate (SPI) was modified by glutaric dialdehyde and characterized by IR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modified soy protein isolate as reinforcing filler partly replaced some carbon black was used to prepare the SPI/rubber composites. Based on the mechanical and dynamic tests of their vulcanizates, the results showed that when a small amount of modified SPI (8~10phr) as reinforcement agent was used, the mechanical properties were improved. Moreover, the changes of their lgE’ and tanδ occurred.


2018 ◽  
Vol 198 ◽  
pp. 620-630 ◽  
Author(s):  
Yan Guo ◽  
Xianhao Zhang ◽  
Wenhui Hao ◽  
Yumei Xie ◽  
Lin Chen ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Rui Shen ◽  
Dehui Lin ◽  
Zhe Liu ◽  
Honglei Zhai ◽  
Xingbin Yang

In this study, the anti-solvent precipitation and a simple complex method were applied for the preparation of bacterial cellulose nanofiber/soy protein isolate (BCNs/SPI) colloidal particles. Fourier transform IR (FT-IR) showed that hydrogen bonds generated in BCNs/SPI colloidal particles via the anti-solvent precipitation were stronger than those generated in BCNs/SPI colloidal particles self-assembled by a simple complex method. Meanwhile, the crystallinity, thermal stability, and contact angle of BCNs/SPI colloidal particles via the anti-solvent precipitation show an improvement in comparison with those of BCNs/SPI colloidal particles via a simple complex method. BCNs/SPI colloidal particles via the anti-solvent precipitation showed enhanced gel viscoelasticity, which was confirmed by dynamic oscillatory measurements. Furthermore, high internal phase Pickering emulsions (HIPEs) were additionally stable due to their stabilization by BCNs/SPI colloidal particles via the anti-solvent precipitation. Since then, HIPEs stabilized by BCNs/SPI colloidal particles via the anti-solvent precipitation were used for the delivery of curcumin. The curcumin-loaded HIPEs showed a good encapsulation efficiency and high 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal efficiency. Additionally, the bioaccessibility of curcumin was significantly increased to 30.54% after the encapsulation using the prepared HIPEs. Therefore, it can be concluded that the anti-solvent precipitation is an effective way to assemble the polysaccharide/protein complex particles for the stabilization of HIPEs, and the prepared stable HIPEs showed a potential application in the delivery of curcumin.


2012 ◽  
Vol 580 ◽  
pp. 481-484 ◽  
Author(s):  
Jian Jun Xie ◽  
Na Li ◽  
Nian Zeng

Soy proteins have shown great potential for use as renewable and environmentally friendly adhesives. The orthogonal experiments are designed for the urea-modified soy protein isolate(SPI) adhesives and the optimum formula is obtained. The mass concentrations of SPI and urea are 14% and 8%(relative to the total mass of SPI and water), the reaction temperature and time are 35°C and 60 min, respectively. Some basic and adhesion properties and its structure of the modified SPI adhesive for the optimum formula are measured. The viscosity is 43Pa.s, and the dry- and wet-state adhesion strengths of the urea-modified SPI optimum formula are 0.96MPa and 0.78MPa(>0.72MPa), respectively according to GB/T10724-2006, which satisfied with the requirement of the II-type plywood. Its surface hydrophobicity is improved and the thermal properties is slightly improved after 200°C. Recently, some concerns about environmental pollution, resource scarcity, and related health issues have pushed scientists to replace the petrochemicals-based synthetic polymers, which are used extensively in construction, packaging, glue and plywood industries, with the bio-based adhesives. SPI adhesives have shown great potential for use as environmentally friendly adhesives in plywood since 1930s when it’s first be developed. And it has been modified by chemical alkali[1], sodium dodecyl sulfate(SDS)[2,3], and urea[2], guanidine hydrochloride[4], etc. However, most of these modifications can not very well improve the water resistance and the bonding strength separately. Poor water resistance is a fatal weakness which seriously restricts the application in the industry. Many studies[5~8] have shown that the adhesives with some enhanced performances, for example, adhesion strength and water-resistant, can be obtained by unloading SPI molecular chain with the hydrophobic group using urea, SDS, other surfactant and guanidine hydrochloride, etc. And the unloading mechanism of the SPI molecular chain with the hydrophobic group is proclaimed. The optimum concentration of urea is 1mol/L for the water-resistant. The aim of this research was to improve the tacky strength and the water resistance[9] by using urea to modify SPI and evaluate the resulting adhesive’s potential for use in the plywood.


Sign in / Sign up

Export Citation Format

Share Document