scholarly journals Local force titration of wood surfaces by chemical force microscopy

Cellulose ◽  
2021 ◽  
Author(s):  
Claudia Gusenbauer ◽  
Karolina Peter ◽  
Etienne Cabane ◽  
Johannes Konnerth

AbstractChemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of this method is given by translating adhesion forces between a functionalized tip and the sample to chemical surface behavior. In force titration, these adhesion forces are studied in different pH buffers, which allows estimating the pKa value of the analyzed surface. Herein, we report the use of this method to study natural and chemically treated wood surfaces, which are of interest in sustainable material design. First, we show varying adhesion phenomena of OH- and COOH-functionalized tips on native spruce wood cells. Then, we demonstrate how peak force tapping with chemically functionalized tips can be used to estimate the pKa value of gold substrates (pKa ≈ 5.2) and different wood cell wall layers with high spatial resolution. Additionally, the swelling behavior of wood samples is analyzed in varying pH buffers. With the applied method, chemical surface properties of complex natural substrates can be analyzed. Graphical abstract

2016 ◽  
Vol 1 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Sofiane El-Kirat-Chatel ◽  
Yves F. Dufrêne

We establish atomic force microscopy as a new nanoscopy platform for quantifying the forces between fungal pathogens and immune cells.


2007 ◽  
Vol 1060 ◽  
Author(s):  
Ruchirej Yongsunthon ◽  
David E. Baker ◽  
Wendy A. Baker ◽  
Theresa Chang ◽  
Wanda J. Walczak ◽  
...  

ABSTRACTAtomic Force Microscopy (AFM) was employed to probe the internal structure of living HepG2/C3A cells grown on various commercially-available substrates. In order to understand the driving mechanisms behind the different cell morphologies, the surface properties of these substrates was characterized with AFM and related techniques. The roughness of a 10μm×10μm region of a series of substrates was determined and found to be independent of both coating and culture media, with the exception of thick hydrogel-like coatings. Probing with functionalized tips could not distinguish relative degrees of hydrophobicity under cell culture media, presumably because Debye shielding masks the substrate surfaces. Force spectroscopy was performed on the surfaces to determine exposed surface proteins/polymers intrinsic to the substrate and adsorbed from culture media. Preliminary investigation of cell-mediated substrate reconstruction suggests that the cells secrete large (1000kDa) polymeric molecules at the substrate interface.


2019 ◽  
Vol 13 (7) ◽  
pp. 1878-1882 ◽  
Author(s):  
Maximilian Mittelviefhaus ◽  
Daniel B. Müller ◽  
Tomaso Zambelli ◽  
Julia A. Vorholt

Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Yassine Amarouch ◽  
Jaouad El Hilaly ◽  
Driss Mazouzi

Atomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing. This technology permitted to overcome challenges linked to single-cell analyses. Indeed, FluidFM allows isolation and injection of single cells, force-controlled patch clamping of beating cardiac cells, serial weighting of micro-objects, and single-cell extraction for molecular analyses. This work aims to review the recent studies of AFM implementation in molecular and cellular biology.


2016 ◽  
Vol 3 (10) ◽  
pp. 160248 ◽  
Author(s):  
X. Jin ◽  
B. Kasal

This study attempts to address the interpretation of atomic force microscopy (AFM) adhesion force measurements conducted on the heterogeneous rough surface of wood and natural fibre materials. The influences of wood surface roughness, tip geometry and wear on the adhesion force distribution are examined by cyclic measurements conducted on wood surface under dry inert conditions. It was found that both the variation of tip and surface roughness of wood can widen the distribution of adhesion forces, which are essential for data interpretation. When a common Si AFM tip with nanometre size is used, the influence of tip wear can be significant. Therefore, control experiments should take the sequence of measurements into consideration, e.g. repeated experiments with used tip. In comparison, colloidal tips provide highly reproducible results. Similar average values but different distributions are shown for the adhesion measured on two major components of wood surface (cell wall and lumen). Evidence supports the hypothesis that the difference of the adhesion force distribution on these two locations was mainly induced by their surface roughness.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1253-1254
Author(s):  
Charles M. Lieber ◽  
Dmitri Vezenov ◽  
Aleksandr Noy ◽  
Charles Sanders

Chemical force microscopy (CFM) has been used to measure adhesion and friction forces between probe tips and substrates covalently modified with self-assembled monolayers (SAMs) that terminate in distinct functional groups. Probe tips have been modified with SAMs using a procedure that involves coating commercial Si3N4 cantilever/tip assemblies with a thin layer of polycrystalline Au followed by immersion in a solution of a functionalized thiol. This methodology provides a reproducible means for endowing the probe with different chemical functional groups.A force microscope has been used to characterize the adhesive interactions between probe tips and substrates that have been modified with SAMs which terminate with COOH and CH3 functional groups in ethanol water solvent. Force versus distance curves recorded under ethanol show that the interaction between COOH/COOH > CH3/CH3 > COOH/CH3. The measured adhesive forces were found to agree well with predictions of the Johnson, Kendall, and Roberts (JKR) theory of adhesive contact, and thus show that the observed adhesion forces correlate with the surface free energy


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 238
Author(s):  
Fangshu Qu ◽  
Zhimeng Yang ◽  
Shanshan Gao ◽  
Huarong Yu ◽  
Junguo He ◽  
...  

To understand impacts of organic adhesion on membrane fouling, ultrafiltration (UF) membrane fouling by dissolved natural organic matter (NOM) was investigated in the presence of background cations (Na+ and Ca2+) at typical concentrations in surface water. Moreover, NOM adhesion on the UF membrane was investigated using atomic force microscopy (AFM) with colloidal probes and a quartz crystal microbalance with dissipation monitoring (QCM-D). The results indicated that the adhesion forces at the NOM-membrane interface increased in the presence of background cations, particularly Ca2+, and that the amount of adhered NOM increased due to reduced electrostatic repulsion. However, the membrane permeability was almost not affected by background cations in the pore blocking-dominated phase but was aggravated to some extent in the cake filtration-governed phase. More importantly, the irreversible NOM fouling was not correlated with the amount of adhered NOM. The assumption for membrane autopsies is doubtful that retained or adsorbed organic materials are necessarily a primary cause of membrane fouling, particularly the irreversible fouling.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. J. Mckrell ◽  
J. M. Galligan

ABSTRACTAn electrochemical atomic force microscope (ECAFM) has been employed to observe, in situ, the topographical and electrical changes that occur on 304 stainless steel as a function of an electrical potential. The concurrent acquisition of a polarization curve and topographical data allows direct correlation of variations in the surface roughness with the electrochemical characteristics of the passivation process. Also, the large AFM scan size, employed in this study, allows for the delineation and determination of the interdependence of the surface kinetics at various regions of the surface. Simultaneous measurements of topographical and electrical changes at these regions have established a correspondence of the competing kinetics between the reactions of dissolution and passivation. This provides a way to relate chemical surface reactions to surface topography.


2014 ◽  
Vol 89 (20) ◽  
Author(s):  
M. Neu ◽  
N. Moll ◽  
L. Gross ◽  
G. Meyer ◽  
F. J. Giessibl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document