Two-dimensional cellular structure of a kinetically unstable detonation front

2008 ◽  
Vol 44 (4) ◽  
pp. 444-450 ◽  
Author(s):  
A. N. Dremin
2004 ◽  
Vol 8 (2) ◽  
pp. 339-359 ◽  
Author(s):  
X Y Hu ◽  
B C Khoo ◽  
D L Zhang ◽  
Z L Jiang

2015 ◽  
Vol 134 ◽  
pp. 384-392 ◽  
Author(s):  
Xiaobo Gong ◽  
Jian Huang ◽  
Fabrizio Scarpa ◽  
Yanju Liu ◽  
Jinsong Leng

2010 ◽  
Vol 24 (13) ◽  
pp. 1337-1340 ◽  
Author(s):  
CHENG WANG ◽  
TIANBAO MA

In this paper the two-dimensional Euler equations, with a simple chemical reaction model, are used as the governing equations for the detonation problem. The spatial derivatives are evaluated using the fifth-order WENO scheme, and the third-order TVD Runge-Kutta method is employed for the temporal derivative. The characteristics of the two-dimensional detonation in an argon-diluted mixture of hydrogen and oxygen are investigated using Adaptive Mesh Refinement (AMR) method. From computational accuracy point of view, AMR enables the detonation front to be clearer than the method with basic meshes. From the other point of computational time, AMR also saves about half the time as compared with the case of refining the entire field. It is obvious that AMR not only increases the resolution of local field, but also improves the efficiency of numerical simulation.


2017 ◽  
Vol 813 ◽  
pp. 458-481 ◽  
Author(s):  
Wenhu Han ◽  
Wenjun Kong ◽  
Yang Gao ◽  
Chung K. Law

The role of the global curvature on the structure and propagation of cylindrical detonations is studied allowing and without allowing the development of cellular structures through two-dimensional (2-D) and 1-D simulations, respectively. It is shown that as the detonation transitions from being overdriven to the Chapman–Jouguet (CJ) state, its structure evolves from no cell, to growing cells and then to diverging cells. Furthermore, the increased dimension of the average structure of the cellular cylindrical detonation, coupled with the curved transverse wave, leads to bulk un-reacted pockets as the cells grow, and consequently lower average propagation velocities as compared to those associated with smooth fronts. As the global detonation front expands and its curvature decreases, the extent of the un-reacted pockets diminishes and the average velocity of the cellular cylindrical detonation eventually degenerates to that of the smooth fronts. Consequently, the presence of cellular instability renders detonation more difficult to initiate for weakly unstable detonations.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


Sign in / Sign up

Export Citation Format

Share Document