The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations

2017 ◽  
Vol 813 ◽  
pp. 458-481 ◽  
Author(s):  
Wenhu Han ◽  
Wenjun Kong ◽  
Yang Gao ◽  
Chung K. Law

The role of the global curvature on the structure and propagation of cylindrical detonations is studied allowing and without allowing the development of cellular structures through two-dimensional (2-D) and 1-D simulations, respectively. It is shown that as the detonation transitions from being overdriven to the Chapman–Jouguet (CJ) state, its structure evolves from no cell, to growing cells and then to diverging cells. Furthermore, the increased dimension of the average structure of the cellular cylindrical detonation, coupled with the curved transverse wave, leads to bulk un-reacted pockets as the cells grow, and consequently lower average propagation velocities as compared to those associated with smooth fronts. As the global detonation front expands and its curvature decreases, the extent of the un-reacted pockets diminishes and the average velocity of the cellular cylindrical detonation eventually degenerates to that of the smooth fronts. Consequently, the presence of cellular instability renders detonation more difficult to initiate for weakly unstable detonations.

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Misaki Ozawa ◽  
Ludovic Berthier ◽  
Giulio Biroli ◽  
Gilles Tarjus
Keyword(s):  

2016 ◽  
Vol 18 (45) ◽  
pp. 30946-30953 ◽  
Author(s):  
Damien Magne ◽  
Vincent Mauchamp ◽  
Stéphane Célérier ◽  
Patrick Chartier ◽  
Thierry Cabioc'h

The role of the surface groups in chemical bonding in two dimensional Ti3C2is evidenced at the nano-object level.


Author(s):  
Babak Haghpanah ◽  
Jim Papadopoulos ◽  
Davood Mousanezhad ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri

An approach to obtain analytical closed-form expressions for the macroscopic ‘buckling strength’ of various two-dimensional cellular structures is presented. The method is based on classical beam-column end-moment behaviour expressed in a matrix form. It is applied to sample honeycombs with square, triangular and hexagonal unit cells to determine their buckling strength under a general macroscopic in-plane stress state. The results were verified using finite-element Eigenvalue analysis.


Sign in / Sign up

Export Citation Format

Share Document