Eco-geographic units, population hierarchy, and a two-level conservation strategy with reference to a critically endangered salmonid, Sakhalin taimen Parahucho perryi

2014 ◽  
Vol 16 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Lev A. Zhivotovsky ◽  
Andrey A. Yurchenko ◽  
Vitaly D. Nikitin ◽  
Sergei N. Safronov ◽  
Marina V. Shitova ◽  
...  
2011 ◽  
Vol 56 (24) ◽  
pp. 2586-2593 ◽  
Author(s):  
ZhengHuan Wang ◽  
Hong Yao ◽  
YouZhong Ding ◽  
John Thorbjarnarson ◽  
XiaoMing Wang

2020 ◽  
Vol 13 (1) ◽  

A new endemic species, Nepenthes cabanae, belonging to sect. Insignes is described from the Mt. Pantaron range of central Mindanao. The species is assessed as Critically Endangered. This discovery brings the number of Nepenthes species in this mountain range to eight. Mt. Pantaron is currently not a protected area, but the diversity of Nepenthes taxa suggests concerted efforts should be made to develop a conservation strategy to preserve and protect the area.


Conservation ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 350-367
Author(s):  
Shuva Saha ◽  
Shamima Nasren ◽  
Debasish Pandit ◽  
Sohel Mian

Bagarius bagarius (Hamilton, 1822) is widely distributed in South and Southeast Asian countries, including Bangladesh. This species is economically important as a game and food fish. The abundance of this fish is declining around the world, especially in Bangladesh, due to a variety of meteorological and mostly anthropogenic factors, which is potentially generating concern among the conservationists. Therefore, this species has already been declared a critically endangered species by IUCN Bangladesh. Although there is no specific conservation initiative for B. bagarius in Bangladesh, various measures are there to conserve fisheries resources, which may have an impact on conserving B. bagarius in this country. This study reviews the biology and ecology with its distribution throughout the country as well as the world, threats, conservation measures, and finds out the gaps in research on this fish. Moreover, this review suggests a suitable conservation framework to improve the conservation strategy for this critically endangered fish that can be replicated in other countries for the same purpose.


2021 ◽  
Author(s):  
◽  
Johannes Fischer

<p>Seabirds are one of the most threatened taxa on the planet. These species are also considered ecosystem engineers. Therefore, seabirds are of particular conservation interest. One of the most threatened seabirds is the critically endangered Whenua Hou Diving Petrel (Pelecanoides whenuahouensis; WHDP). The WHDP is restricted to a minute (0.018 km2) breeding colony on a single island — Whenua Hou (Codfish Island), Aotearoa (New Zealand). The WHDP population was estimated at 150 adults in 2005. The WHDP is threatened by storms and storm surges, which erode its breeding habitat (fragile foredunes), and potentially by competition for burrows with congenerics.  I aimed to inform suitable conservation strategies for the WHDP. I first quantified the efficacy of past conservation actions (eradications of invasive predators). I compiled burrow counts across four decades to estimate and compare population growth before and after predator eradications. I then investigated offshore threats using tracking data to quantify WHDP offshore distribution, behaviour, and overlap with commercial fishing efforts. Subsequently, I estimated the potential impact and success of WHDP translocations. Specifically, I combined capture-recapture, nest-monitoring, and count data in an integrated population model (IPM) to predict the impact of harvesting chicks for translocations on the source population and to project the establishment of a second population. I then informed future translocation protocols using nest-monitoring data to quantify nest survival and breeding biology. Finally, I tested if WHDP presence had a positive influence on unrelated species groups. I counted two skink species at sites with and without burrows and used occupancy modelling to quantify the influence WHDP burrows had on skink occurrence.  Estimates of population growth before and after predator eradications illustrated that WHDP population growth remained comparatively low and unaffected by this conservation strategy. Therefore, additional interventions are required. WHDP tracking revealed that the non-breeding distribution did not overlap with commercial fishing efforts. However, considerable fishing efforts were present within the breeding distribution. Despite these findings, onshore threats remain present and conservation strategies aimed at addressing terrestrial threats may be more feasible. Results from my IPM showed that translocations could successfully establish a second WHDP population without impacting the source excessively, provided translocation cohorts remain small and translocations are repeated over long time periods (5-10 years). Nest survival was not clearly influenced by interannual variation, distance to sea, and intra- or interspecific competition. Furthermore, I informed future translocation protocols by identifying the preferred harvest window, measurements of ideal translocation candidates, and feeding regimes. Occurrence of one skink species was 114% higher at sites with burrows than at sites without, suggesting that WHDP presence benefits unrelated species.  The information provided in this thesis facilitates the identification of future management strategies for this critically endangered species. However, future conservation management of the WHDP should be based on structured decision-making frameworks that apply iterative adaptive management loops and must acknowledge the unique position of tangata whenua (people of the land). This approach could address the consequences and trade-offs of each alternative, account for uncertainty, facilitate the decolonisation of conservation biology, and would ultimately result in the best potential outcome of the target species in a truly integrated fashion.</p>


Limnology ◽  
2017 ◽  
Vol 19 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Hiroki Mizumoto ◽  
Hirokazu Urabe ◽  
Takashi Kanbe ◽  
Michio Fukushima ◽  
Hitoshi Araki

2021 ◽  
Author(s):  
◽  
Johannes Fischer

<p>Seabirds are one of the most threatened taxa on the planet. These species are also considered ecosystem engineers. Therefore, seabirds are of particular conservation interest. One of the most threatened seabirds is the critically endangered Whenua Hou Diving Petrel (Pelecanoides whenuahouensis; WHDP). The WHDP is restricted to a minute (0.018 km2) breeding colony on a single island — Whenua Hou (Codfish Island), Aotearoa (New Zealand). The WHDP population was estimated at 150 adults in 2005. The WHDP is threatened by storms and storm surges, which erode its breeding habitat (fragile foredunes), and potentially by competition for burrows with congenerics.  I aimed to inform suitable conservation strategies for the WHDP. I first quantified the efficacy of past conservation actions (eradications of invasive predators). I compiled burrow counts across four decades to estimate and compare population growth before and after predator eradications. I then investigated offshore threats using tracking data to quantify WHDP offshore distribution, behaviour, and overlap with commercial fishing efforts. Subsequently, I estimated the potential impact and success of WHDP translocations. Specifically, I combined capture-recapture, nest-monitoring, and count data in an integrated population model (IPM) to predict the impact of harvesting chicks for translocations on the source population and to project the establishment of a second population. I then informed future translocation protocols using nest-monitoring data to quantify nest survival and breeding biology. Finally, I tested if WHDP presence had a positive influence on unrelated species groups. I counted two skink species at sites with and without burrows and used occupancy modelling to quantify the influence WHDP burrows had on skink occurrence.  Estimates of population growth before and after predator eradications illustrated that WHDP population growth remained comparatively low and unaffected by this conservation strategy. Therefore, additional interventions are required. WHDP tracking revealed that the non-breeding distribution did not overlap with commercial fishing efforts. However, considerable fishing efforts were present within the breeding distribution. Despite these findings, onshore threats remain present and conservation strategies aimed at addressing terrestrial threats may be more feasible. Results from my IPM showed that translocations could successfully establish a second WHDP population without impacting the source excessively, provided translocation cohorts remain small and translocations are repeated over long time periods (5-10 years). Nest survival was not clearly influenced by interannual variation, distance to sea, and intra- or interspecific competition. Furthermore, I informed future translocation protocols by identifying the preferred harvest window, measurements of ideal translocation candidates, and feeding regimes. Occurrence of one skink species was 114% higher at sites with burrows than at sites without, suggesting that WHDP presence benefits unrelated species.  The information provided in this thesis facilitates the identification of future management strategies for this critically endangered species. However, future conservation management of the WHDP should be based on structured decision-making frameworks that apply iterative adaptive management loops and must acknowledge the unique position of tangata whenua (people of the land). This approach could address the consequences and trade-offs of each alternative, account for uncertainty, facilitate the decolonisation of conservation biology, and would ultimately result in the best potential outcome of the target species in a truly integrated fashion.</p>


2022 ◽  
Vol 8 ◽  
Author(s):  
Sven-Erick Weiss ◽  
Arsalan Emami-Khoyi ◽  
Horst Kaiser ◽  
Paul D. Cowley ◽  
Nicola C. James ◽  
...  

The critically endangered estuarine pipefish, Syngnathus watermeyeri, is one of Africa’s rarest fish species and currently faces a significant risk of extinction. A combination of anthropogenic and natural factors threaten submerged macrophyte beds in the two South African estuaries (Bushmans and Kariega) in which the species’ only two known remaining populations reside. Here, we genotyped 34 pipefish from both populations using genome-wide data to determine whether the two estuaries harbour distinct genetic diversity, such that translocating individuals between them might improve the genetic health of both. Our results show that both populations are highly inbred, and no statistically significant genetic structure was found between them. Moreover, individuals both within and between estuaries were very closely related to each other. These results indicate that the remaining populations of the estuarine pipefish suffer from the adverse genetic effects of small population sizes. Even though recent surveys have estimated population sizes in the order of thousands of individuals, these may fluctuate considerably. Although the translocation of genetically similar individuals between habitats will not increase local genetic diversity, the creation of additional populations across the species’ historical range may be a suitable conservation strategy to prevent further loss of genetic diversity, and to minimise the overall extinction risk posed by environmental stochasticity.


2021 ◽  
Vol 154 (1) ◽  
pp. 49-55
Author(s):  
Ümit Subaşı ◽  
Aykut Güvensen

Background and aims – Campanula vardariana (Campanulaceae) is a critically endangered endemic chasmophyte with a single population situated in the west of Turkey. Very little is known about the reproductive biology of C. vardariana and more information is needed to develop a sound conservation strategy for this endemic species.Material and methods – Floral traits such as flower morphology, nectar, and sugar concentration, as well as pollen viability and stigma receptivity were measured in different floral phases. We observed insect visitations to the flowers and identified pollinators. Additionally, we investigated the effect of cross and self-pollination on fruit and seed production.Key results – The flowers of C. vardariana are protandrous. The length of the styles, which were 8.74 mm during the pollen loading phase, reached 11.35 mm during the pollen presentation phase. The visitor observations made on the C. vardariana flowers revealed 11 visitor species from 5 families: 5 Halictidae, 3 Apidae, and one species each from Megachilidae, Colletidae, and Bombyliidae. Lasioglossum spp. touched the anthers and stigma using several parts of their bodies and were significant pollinators of C. vardariana. Under natural conditions, the mean number of seeds per fruit was around 60 after cross pollination, while no fruits were formed when pollinators were excluded.Conclusion – Campanula vardariana is entirely dependent on pollinators for its reproductive success, and bees, especially Halictidae and to a lesser extent Apidae, play an important role. Campanula vardariana is restricted to cracks in calcareous rocks and its population is threatened by goat overgrazing and mining activities (quarry formation). Since seed production is abundant in this population, anthropogenic activities currently form the biggest threat to its existence.


2016 ◽  
Vol 67 (8) ◽  
pp. 1263 ◽  
Author(s):  
Xavier Hoenner ◽  
Scott D. Whiting ◽  
Mark Hamann ◽  
Colin J. Limpus ◽  
Mark A. Hindell ◽  
...  

Despite being critically endangered, the at-sea behaviour of hawksbill turtles (Eretmochelys imbricata) remains insufficiently understood to support a global conservation strategy. Habitat location and spatial use are poorly documented, which is particularly true for the globally important Australian hawksbill population. We equipped 10 adult female hawksbill turtles nesting on Groote Eylandt, northern Australia, with Fastloc GPS and Argos satellite transmitters. We quantified fine-scale habitat use and area-restricted search behaviour, and located potential feeding and developmental habitats by simulating hatchling turtle dispersal patterns by using a particle-tracking hydrological model. During the breeding season, females mostly remained near their nesting site. Post-breeding, all turtles migrated to foraging sites on the Australian continental shelf, primarily in the Gulf of Carpentaria in coastal seagrass pastures, but also offshore near coral-reef platforms. The distribution of adult foraging grounds was similar to simulated dispersal patterns of hatchling turtles from distant rookeries, thus highlighting the ecological significance of the Gulf of Carpentaria for hawksbill turtles. Although this hawksbill turtle population is likely to be endemic to Australian waters, national and international conservation initiatives are required to mitigate sources of anthropogenic mortality (e.g. illegal tortoise-shell trade, incidental captures in fishing gear, marine debris, seabed mining exploitation).


Sign in / Sign up

Export Citation Format

Share Document