Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass

2008 ◽  
Vol 44 (2) ◽  
pp. 182-185 ◽  
Author(s):  
S. Nenkova ◽  
T. Vasileva ◽  
K. Stanulov
Holzforschung ◽  
2015 ◽  
Vol 69 (6) ◽  
pp. 761-768 ◽  
Author(s):  
Stepan M. Krutov ◽  
Dmitry V. Evtuguin ◽  
Elena V. Ipatova ◽  
Sonia A.O. Santos ◽  
Yurii N. Sazanov

Abstract Technical hydrolysis lignin (THL) was micronized by grinding in a rotary-jet mill to obtain a fraction of approximately 5 mm. Both initial and milled THLs were liquefied by thermal alkaline treatment at 220°C for 2 h. Upgraded THLs that were nonmilled (L1) and milled (L2) were desalted by treatment with cation-exchanged resin and were dried. Micronization affected the course of hydrothermal alkaline treatment and the structure and composition of the obtained lignin. Thus, L2 contained much less concomitant polysaccharides and extractives than L1 and was more condensed. The molecular weights of L1 and L2 were 1100 and 1000 Da, respectively, as determined by size-exclusion chromatography. Structural characterization carried out by employing tandem electrospray ionization-mass spectrometry and 1D and 2D nuclear magnetic resonance spectroscopy revealed that small amounts of β-O-4 (∼6 mol.%), β-5, and β-β structures still remained in L1 and L2. Overall, upgraded lignins are oligomers (trimers-pentamers) with highly degraded propane chains and possess polyconjugated condensed aromatic structures. Upgraded THL seems to be a promising raw material for polymeric formulations.


Cellulose ◽  
2020 ◽  
Vol 27 (16) ◽  
pp. 9505-9523
Author(s):  
Anastasiia Lopatina ◽  
Ikenna Anugwom ◽  
Mohammadamin Esmaeili ◽  
Liisa Puro ◽  
Tiina Virtanen ◽  
...  

AbstractIn this study cellulose-rich membranes were fabricated from untreated and treated hardwood biomass solutions in 1-ethyl-3-methylimidazolium acetate ([Emim][OAc])—dimetylsulfoxide (DMSO) system via wet phase separation. Wood treatment methods aimed to get purified cellulose fraction of wood. Treatment sequence was as followed: deep eutectic solvent pretreatment, sodium chlorite bleaching, and alkaline treatment. Resulted biomass after each treatment step was characterized by chemical composition and crystalline fraction content. Flat-sheet membranes were produced from biomass samples after each treatment step. Characterization of membranes included measurements of pure water permeability and (poly)ethyleneglycol 35 kDa retention, Fourier-transform infrared and Raman spectroscopy, X-ray diffraction measurements and thermogravimetric analysis. The study revealed that it was possible to fabricate membrane from untreated wood as well as from wood biomass after each of treatment steps. The resulted membranes differed in chemical composition and filtration performance. Membrane prepared directly from untreated wood had the highest permeability, the lowest retention; and the most complex chemical composition among others. As treatment steps removed lignin and hemicelluloses from the wood biomass, the corresponding membranes became chemically more homogeneous and showed increased retention and decreased permeability values.


2010 ◽  
Vol 46 (5) ◽  
pp. 807-808 ◽  
Author(s):  
T. Radoykova ◽  
S. Nenkova ◽  
K. Stanulov

1999 ◽  
Vol 69 (3) ◽  
pp. 322 ◽  
Author(s):  
Cornelis A. van Walree ◽  
Yumiko Sakuragi ◽  
Dorte B. Steensgaard ◽  
Carola S. Bösinger ◽  
Niels-Ulrik Frigaard ◽  
...  

2007 ◽  
Vol 43 (4) ◽  
pp. 209-217 ◽  
Author(s):  
MINZHE AN ◽  
YUEQIN TANG ◽  
SHIGERU MORIMURA ◽  
KENJI KIDA

2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Sign in / Sign up

Export Citation Format

Share Document