Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species

Ecotoxicology ◽  
2020 ◽  
Vol 29 (9) ◽  
pp. 1516-1521
Author(s):  
Michiel A. Daam ◽  
Paulo Ilha ◽  
Luis Schiesari
1988 ◽  
Vol 68 (1) ◽  
pp. 63-75 ◽  
Author(s):  
LEONARD J. EATON ◽  
DAVID G. PATRIQUIN

Soil ammonium and nitrate in the top 15 cm of soil were monitored after application of ammonium nitrate and ammonium sulfate to plots at 14 PF (previously fertilized) and 12 NF (never fertilized) lowbush blueberry (Vaccinium angustifolium Ait.) stands representing a range of soil types and management histories. Overall, nitrate values in unfertilized and ammonium sulfate plots were higher at PF than at NF sites, suggesting greater nitrification at PF sites. In laboratory incubation studies, nitrification proceeded immediately in soil from a PF site, but only after a 4-wk lag in that from an adjacent NF site. Nitrification rates were low compared to that in a garden soil (pH 6.6). N-Serve inhibited nitrification in both soils. In ammonium nitrate plots, "excess" N values (N values in fertilized plots minus values in unfertilized plots) were higher for PF than for NF sites, suggesting greater immobilization, plant uptake or loss of N at NF sites. There was no evidence, in laboratory studies, of immobilization of added N by soil from either type of site. Rhizome N concentration increased significantly in response to fertilization at an NF site, but not at a PF site. Key words: Blueberry (lowbush), fertilizer and soil nitrogen


2015 ◽  
Vol 34 (10) ◽  
pp. 2322-2327 ◽  
Author(s):  
Edward Tak Chuen Lau ◽  
Nancy Elizabeth Karraker ◽  
Kenneth Mei Yee Leung

2010 ◽  
Vol 99 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Manuel E. Ortiz-Santaliestra ◽  
María José Fernández-Benéitez ◽  
Adolfo Marco ◽  
Miguel Lizana

2010 ◽  
pp. 134-140
Author(s):  
Andrea Balla Kovács ◽  
Anita Szabó ◽  
Emese Bartáné Szabó

A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer onnutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate(116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomizedcomplete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental areawas chernozem with medium sufficiency level of N and P and poor level of K.Our main results:The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3--N and NH4+-N and also the quantity of soluble organic-N werealmost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3--N increased to the greatestextent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3- -N and total-N contents in the plotstreated with ammonium-nitrate, the largest NH4+-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plotstreated with urea.Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. Inthe case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3--N, organic-N and total-N compared to thevalues of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4+-Ncontent of soil in more cases were higher than that of values with artificial fertilizer treatment.As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. MicrobionUNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizeryielded a decrease in these values compared to the control.All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterialfertilizer increased AL-Mg values in any cases.


2021 ◽  
Author(s):  
Shun Hasegawa ◽  
Torgny Näsholm ◽  
Mark Bonner

<p>There is a growing body of evidence that plants uptake a monumental amount of organic forms of nitrogen (N) like amino acids in addition to those in inorganic forms. An amino acid-based fertiliser has been shown to improve seedling development and commercialised. Boreal forests store a substantial amount of carbon (C) in the soil and this is widely known to be further enhanced by the addition of inorganic nitrogen fertiliser via hampered decomposition. However, very little is known about how amino acid-based fertiliser influences C/N cycling in the boreal soils. The organic forms of N supply not only nitrogen but also carbon. If the previously demonstrated suppression of SOM decomposition is owing to altered C:N ratios in substrates, the amino acid-based fertiliser may not have as pronounced effects on the soil as the inorganic fertiliser. </p><p> We have examined the impacts of the organic fertiliser (100 kg N and 130 kg C ha<sup>-1</sup> year<sup>-1</sup>)—arginine—on the chemical composition of soil organic matter in a boreal forest in comparison to non-fertilised, inorganic fertilised (ammonium-nitrate) and C-controlled inorganic fertilised (sucrose + ammonium-nitrate) conditions. The soil organic matter was characterised using two metrics: pyrolysis GC/MS and 13C solid-state nuclear magnetic resonance (NMR), combined with enzymological and metagenomic analysis.</p><p>We will be presenting the results following 4-year of the fertiliser treatments. Preliminary results have shown that there is limited evidence that the fertiliser treatments alter soil C/N cycing in four years. Nevertheless, the chemical composition in SOM under the organic fertiliser condition was similar to that under C-controlled compared to inorganic fertiliser treatment. </p>


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Jasna Hrenović ◽  
Yüksel Orhan ◽  
Hanife Büyükgüngör ◽  
Miroslav Horvatiček

AbstractThe influence of different concentration ranges (0–500 mg/L) of ammonium, nitrate and nitrite presence in the wastewater, on the performance of the pure culture of phosphate-accumulating bacterium Acinetobacter junii in the anaerobic and aerobic conditions, was investigated. A. junii was able to use ammonium and nitrate salts as the source of nitrogen, unlike in the case of nitrite salt. Comparing to the control reactors with the peptone and yeast extract as the sources of nitrogen, at the lowest tested concentration of ammonium and nitrate the performance of the system was inhibited due to the nitrogen deficit in the wastewater, while at the highest concentration it was positively influenced. Nitrite in all concentrations detrimentally affected the phosphate release and uptake rates, chemical oxygen demand uptake rates, nitrogen uptake rates, as well as multiplication of A. junii. The higher the nitrite concentration, the more pronounced was the effect. At the highest nitrite concentration tested a complete failure of the system was observed.


2011 ◽  
Vol 39 (6) ◽  
pp. 1844-1848 ◽  
Author(s):  
Basilio Zafrilla ◽  
Rosa María Martínez-Espinosa ◽  
María José Bonete ◽  
Julea N. Butt ◽  
David J. Richardson ◽  
...  

In the absence of ammonium, many organisms, including the halophilic archaeon Haloferax volcanii DS2 (DM3757), may assimilate inorganic nitrogen from nitrate or nitrite, using a ferredoxin-dependent assimilatory NO3−/NO2− reductase pathway. The small acidic ferredoxin Hv-Fd plays an essential role in the electron transfer cascade required for assimilatory nitrate and nitrite reduction by the cytoplasmic NarB- and NirA-type reductases respectively. UV–visible absorbance and EPR spectroscopic characterization of purified Hv-Fd demonstrate that this protein binds a single [2Fe–2S] cluster, and potentiometric titration reveals that the cluster shares similar redox properties with those present in plant-type ferredoxins.


Sign in / Sign up

Export Citation Format

Share Document