Trace metal concentrations in suspended particles, sediments and clams (Ruditapes philippinarum) from Jiaozhou Bay of China

2006 ◽  
Vol 121 (1-3) ◽  
pp. 491-501 ◽  
Author(s):  
Yu Li ◽  
Zhiming Yu ◽  
Xiuxian Song ◽  
Qinglin Mu
1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2019 ◽  
Author(s):  
Alexandra Almaguer ◽  
◽  
Hilary Sanders Lackey ◽  
Kyle R. McCarty ◽  
Jade Star Lackey

2020 ◽  
Author(s):  
Christopher Mills ◽  
◽  
David C. Smith ◽  
Craig A. Stricker ◽  
John G. Schumacher ◽  
...  

Ecotoxicology ◽  
2020 ◽  
Vol 29 (9) ◽  
pp. 1327-1346
Author(s):  
Mackenzie Anne Clifford Martyniuk ◽  
Patrice Couture ◽  
Lilian Tran ◽  
Laurie Beaupré ◽  
Nastassia Urien ◽  
...  

1995 ◽  
Vol 31 (1-3) ◽  
pp. 108-110 ◽  
Author(s):  
Ahmad Ismail ◽  
Noor Razi Jusoh ◽  
Idris A. Ghani

1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


2018 ◽  
Vol 10 (6) ◽  
pp. 1758 ◽  
Author(s):  
J. Marquez ◽  
Olivier Pourret ◽  
Michel-Pierre Faucon ◽  
Sebastian Weber ◽  
Thi Hoàng ◽  
...  

The goal of this study was to quantify the mobility and partitioning of trace elements originating from mine waste rocks derived from open pit coal extraction activities. The results showed that native rice plants were adapted to growing in metal contaminated soils, posing a severe health risk to local population. Sequential extraction procedures and bulk soil chemical analyses both suggest enrichment of Cd, Pb and Cu in rice paddy soils. Lead was shown to be evenly partitioned among all mineral and organic phases. Copper was associated with carbonates and organic matter. Smaller fractions of Pb and Cu were also bound to Fe and Mn oxides. Only 25% of Cd, 9% of Pb and 48% of Cu were associated with the exchangeable fraction, considered mobile and thus bioavailable for plant uptake. Effects of Cd, Cu and Pb on local Cam Pha Nep cai Hoa vang, and control Asia Italian rice, showed marked differences in growth. The local Vietnamese variety grew close to control values, even upon exposure to higher trace metal concentrations. Whereas the development of the control rice species was significantly affected by increasing trace metal concentrations. This result suggests toxic trace elements accumulation in the edible parts of crops.


Sign in / Sign up

Export Citation Format

Share Document