scholarly journals Effect of Cadmium, Copper and Lead on the Growth of Rice in the Coal Mining Region of Quang Ninh, Cam-Pha (Vietnam)

2018 ◽  
Vol 10 (6) ◽  
pp. 1758 ◽  
Author(s):  
J. Marquez ◽  
Olivier Pourret ◽  
Michel-Pierre Faucon ◽  
Sebastian Weber ◽  
Thi Hoàng ◽  
...  

The goal of this study was to quantify the mobility and partitioning of trace elements originating from mine waste rocks derived from open pit coal extraction activities. The results showed that native rice plants were adapted to growing in metal contaminated soils, posing a severe health risk to local population. Sequential extraction procedures and bulk soil chemical analyses both suggest enrichment of Cd, Pb and Cu in rice paddy soils. Lead was shown to be evenly partitioned among all mineral and organic phases. Copper was associated with carbonates and organic matter. Smaller fractions of Pb and Cu were also bound to Fe and Mn oxides. Only 25% of Cd, 9% of Pb and 48% of Cu were associated with the exchangeable fraction, considered mobile and thus bioavailable for plant uptake. Effects of Cd, Cu and Pb on local Cam Pha Nep cai Hoa vang, and control Asia Italian rice, showed marked differences in growth. The local Vietnamese variety grew close to control values, even upon exposure to higher trace metal concentrations. Whereas the development of the control rice species was significantly affected by increasing trace metal concentrations. This result suggests toxic trace elements accumulation in the edible parts of crops.

2011 ◽  
Vol 1 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Thi Thu Ha Chu

In Vietnam, soil contamination with lead and cadmium at very high level was investigated and discovered in the surrounding areas of zinc-lead mining and processing factory in Tan Long (Dong Hy district, Thai Nguyen province) and around the lead-recycling smelter in Chi Dao (Van Lam district, Hung Yen province). The survey on soil contaminated by arsenic due to the tin mining and sifting activities in Ha Thuong (Dai Tu district, Thai Nguyen province) was also carried out. In Tan Long, the concentrations of lead and cadmium in the old solid waste dump from zinc-lead factory varied from 1,100 to 13,000 mg·kg-1, and from 11.34 to 61.04 mg·kg-1, respectively. Soil Pollution Indexes (SPI) of lead and cadmium were highest in the old solid waste dump area, followed by the ones in the rice paddy soils. In Chi Dao, the soils of many sites were polluted with lead and cadmium such as in the gardens of lead-recycling households where the concentrations of lead and cadmium were 7,000 - 15,000 mg·kg-1 and 1.8 - 3.6 mg·kg-1. In rice paddies, the soils were also polluted by lead. SPI of lead in paddy soil areas within 300 m radius from the lead smelter were from 3.6 to 100 fold higher than the safe limit. The sediment from the ditch near the lead smelters contained extremely high levels of lead (7,000 - 110,000 mg·kg-1) and cadmium (3.8 - 17.7 mg·kg-1). The tin mining and sifting activities in Ha Thuong was the cause for the arsenic contamination of the soil in this area. The arsenic contents in soils at all locations investigated were higher than 320 mg·kg-1 (dry weight) and up to 3,809 mg·kg-1. Tại Việt Nam, đất bị ô nhiễm bởi chì và ca-đi-mi với hàm lượng cao đã được điều tra phát hiện ở các khu vực phụ cận của nhà máy khai thác và chế biến kẽm/chì thuộc địa phận xã Tân Long, huyện Đồng Hỷ, tỉnh Thái Nguyên và các khu vực phụ cận củalòtái chế chì thuộc địa phận xã Chỉ Đạo, huyện Văn Lâm, tỉnh Hưng Yên.Sự khảo sát đất bị ô nhiễm bởi a-sen do các hoạt động khai thác và tuyểnthiếc ở xã Hà Thượng, huyện Đại Từ, tỉnh Thái Nguyên cũng đã được tiến hành. Tại xã Tân Long, nồng độ chì và ca-đi-mitrong bãi chất thải rắncũtừ nhà máy sản xuất kẽm chì là 1.100 - 1.300 mg.kg-1 và từ 11,34 đến 61,04 mg.kg-1, tương ứng. Chỉ số ô nhiễm đất (SPI) của chìvà ca-đi-micao nhất trongkhu vực đổ chất thải rắn cũ, tiếp theo sau là ở các ruộng lúa. Tạixã ChỉĐạo, đất ở nhiều địa điểmđã bị ô nhiễm chìvà ca-đi-mi chẳng hạn như trong khu vườn của các hộ gia đình tái chế chì, nồng độ chìvà ca-đi-milà 7.000 - 15.000 mg.kg-1 và 1,8 - 3,6 mg.kg-1. Trong cánh đồng lúa, đất cũng bị ô nhiễm bởi chì. Chỉ số ô nhiễm đất của chì (SPI-Pb) trong cánh đồng lúa trong vòng bán kính 300 m từ lò tái chế chì cao hơn giới hạn của đất an toàn từ 3,6 đến 100 lần. Trầm tíchthutừ kênhgần lòtái chếchì chứa hàm lượngchìrấtcao (7000 - 110.000 mg.kg-1) và ca-đi-mi (3,8 -17,7 mg.kg-1). Việc khai thác và tuyển thiếc tại xã Hà Thượng đã gây ra ô nhiễm a-sen trong đất tạikhu vực này. Hàm lượng a-sentrong đất tại tất cả các địa điểm nghiên cứu cao hơn 320 mg.kg-1 (trọng lượng khô), đặc biệt là lên đến 3809 mg.kg-1.


2021 ◽  
Author(s):  
◽  
Chanelle Seabrook

<p>New Zealand’s coastal marine environment has high economic, social and cultural importance. In order to manage, preserve and safely enjoy coastal environments and their resources, a good understanding of their biochemistry is required. Biomonitors provide a mechanism for monitoring changes in an environment especially in measuring metals entering the food chain. Trace metals are non-biodegradable, have the ability to become highly toxic to biota at relatively low concentrations, and bio-magnify up the food chain. Amphipods, a diverse order of crustacea, are widespread, abundant, relatively sedentary and important at the base of the food web. Furthermore, amphipods bioaccumulate pollutants through multiple sources, including seawater, sediment and their diet, and may thus provide a comprehensive insight into the chemistry of an environment.  This study investigates the trace metal chemistry of amphipods and associated algae, seawater and sediment, from coastal marine sites around Chatham Island. Samples were obtained from 11 coastal localities with the sampling sites located near potential point pollutants and on distinct basement lithologies, as well as a site identified by Te Aitanga o Ngā Uri o Wharekauri as relatively pristine. Three algal-dwelling amphipods (Aora sp. 1, Apohyale sp. 1, Eusiroides sp. 1) and one sand hopper species (Bellorchestia chathamensis (Hurley, 1956)) were found to be the most abundant and ubiquitous species collected. Sites were prioritised based on the abundances of these amphipod species and samples were analysed for >35 trace elements. Spatial and interspecific variations were observed for all amphipod species investigated. Eusiroides sp. 1 was the most sensitive algal-dwelling amphipod species analysed and consistently had highest concentrations of trace metals at a given site. No size effect was found for most trace element concentrations in two amphipod species. All three algal-dwelling amphipod species and associated seawater samples from Hanson Point South had elevated concentrations for > 19 trace metals, including potentially ecotoxic trace metals such as Ti, V, Cr, Co, Ni, Cu, and Fe. Arsenic was elevated in the algal-dwelling amphipod species at Owenga and Cd at Kaingaroa West and Cape Pattisson. Trace metal concentrations in the algal-dwelling amphipod specimens were broadly reflected in their associated seawater and/or algae. However there were variations in this, with the Hanson Point South amphipods more closely matching seawater than algae concentration patterns, and the algae at Owenga not showing As elevations noted in the amphipods. This suggests amphipods accumulate metals from a variety of sources, both directly from seawater and variably from algae. Sediments appeared to have little influence on the trace metals bioaccumulated in the amphipod specimens.   Results from this research demonstrate that species and size effects must be considered to rigorously use amphipods as biomonitors. Amphipods appear to provide a better insight to bio-available trace metal contamination compared to the other sample types analysed here. This thesis aids in the development and application of amphipods as biomonitors in New Zealand coastal waters and provides a baseline for sites located across Chatham Island for >30 trace elements. This baseline may be utilized by future studies to investigate temporal variations in trace metal concentrations on Chatham Island.</p>


2021 ◽  
Author(s):  
◽  
Chanelle Seabrook

<p>New Zealand’s coastal marine environment has high economic, social and cultural importance. In order to manage, preserve and safely enjoy coastal environments and their resources, a good understanding of their biochemistry is required. Biomonitors provide a mechanism for monitoring changes in an environment especially in measuring metals entering the food chain. Trace metals are non-biodegradable, have the ability to become highly toxic to biota at relatively low concentrations, and bio-magnify up the food chain. Amphipods, a diverse order of crustacea, are widespread, abundant, relatively sedentary and important at the base of the food web. Furthermore, amphipods bioaccumulate pollutants through multiple sources, including seawater, sediment and their diet, and may thus provide a comprehensive insight into the chemistry of an environment.  This study investigates the trace metal chemistry of amphipods and associated algae, seawater and sediment, from coastal marine sites around Chatham Island. Samples were obtained from 11 coastal localities with the sampling sites located near potential point pollutants and on distinct basement lithologies, as well as a site identified by Te Aitanga o Ngā Uri o Wharekauri as relatively pristine. Three algal-dwelling amphipods (Aora sp. 1, Apohyale sp. 1, Eusiroides sp. 1) and one sand hopper species (Bellorchestia chathamensis (Hurley, 1956)) were found to be the most abundant and ubiquitous species collected. Sites were prioritised based on the abundances of these amphipod species and samples were analysed for >35 trace elements. Spatial and interspecific variations were observed for all amphipod species investigated. Eusiroides sp. 1 was the most sensitive algal-dwelling amphipod species analysed and consistently had highest concentrations of trace metals at a given site. No size effect was found for most trace element concentrations in two amphipod species. All three algal-dwelling amphipod species and associated seawater samples from Hanson Point South had elevated concentrations for > 19 trace metals, including potentially ecotoxic trace metals such as Ti, V, Cr, Co, Ni, Cu, and Fe. Arsenic was elevated in the algal-dwelling amphipod species at Owenga and Cd at Kaingaroa West and Cape Pattisson. Trace metal concentrations in the algal-dwelling amphipod specimens were broadly reflected in their associated seawater and/or algae. However there were variations in this, with the Hanson Point South amphipods more closely matching seawater than algae concentration patterns, and the algae at Owenga not showing As elevations noted in the amphipods. This suggests amphipods accumulate metals from a variety of sources, both directly from seawater and variably from algae. Sediments appeared to have little influence on the trace metals bioaccumulated in the amphipod specimens.   Results from this research demonstrate that species and size effects must be considered to rigorously use amphipods as biomonitors. Amphipods appear to provide a better insight to bio-available trace metal contamination compared to the other sample types analysed here. This thesis aids in the development and application of amphipods as biomonitors in New Zealand coastal waters and provides a baseline for sites located across Chatham Island for >30 trace elements. This baseline may be utilized by future studies to investigate temporal variations in trace metal concentrations on Chatham Island.</p>


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (&gt; 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2017 ◽  
Author(s):  
Morrisa Luddy ◽  
◽  
Allison Weinsteiger ◽  
Oluyinka Oyewumi

2019 ◽  
Author(s):  
Alexandra Almaguer ◽  
◽  
Hilary Sanders Lackey ◽  
Kyle R. McCarty ◽  
Jade Star Lackey

2020 ◽  
Author(s):  
Christopher Mills ◽  
◽  
David C. Smith ◽  
Craig A. Stricker ◽  
John G. Schumacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document