Long-wave transverse instability of interfacial gravity–capillary solitary waves in a two-layer potential flow in deep water

2009 ◽  
Vol 65 (4) ◽  
pp. 325-344 ◽  
Author(s):  
Boguk Kim
2019 ◽  
Vol 871 ◽  
pp. 1028-1043
Author(s):  
M. Abid ◽  
C. Kharif ◽  
H.-C. Hsu ◽  
Y.-Y. Chen

The bifurcation of two-dimensional gravity–capillary waves into solitary waves when the phase velocity and group velocity are nearly equal is investigated in the presence of constant vorticity. We found that gravity–capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found that the presence of vorticity influences strongly (i) the solitary wave properties and (ii) the growth rate of unstable transverse perturbations. The growth rate and bandwidth instability are given numerically and analytically as a function of the vorticity.


2017 ◽  
Vol 834 ◽  
pp. 92-124 ◽  
Author(s):  
Beomchan Park ◽  
Yeunwoo Cho

Two-dimensional (2-D) gravity–capillary solitary waves are generated using a moving pressure jet from a 2-D narrow slit as a forcing onto the surface of deep water. The forcing moves horizontally over the surface of the deep water at speeds close to the minimum phase speed $c_{min}=23~\text{cm}~\text{s}^{-1}$. Four different states are observed according to the forcing speed. At relatively low speeds below $c_{min}$, small-amplitude depressions are observed and they move steadily just below the moving forcing. As the forcing speed increases towards $c_{min}$, nonlinear 2-D gravity–capillary solitary waves are observed, and they move steadily behind the moving forcing. When the forcing speed is very close to $c_{min}$, periodic shedding of a 2-D local depression is observed behind the moving forcing. Finally, at relatively high speeds above $c_{min}$, a pair of short and long linear waves is observed, respectively ahead of and behind the moving forcing. In addition, we observe the transverse instability of free 2-D gravity–capillary solitary waves and, further, the resultant formation of three-dimensional gravity–capillary solitary waves. These experimental observations are compared with numerical results based on a model equation that admits gravity–capillary solitary wave solutions near $c_{min}$. They agree with each other very well. In particular, based on a linear stability analysis, we give a theoretical proof for the transverse instability of the 2-D gravity–capillary solitary waves on deep water.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


A detailed discussion of Nekrasov’s approach to the steady water-wave problems leads to a new integral equation formulation of the periodic problem. This development allows the adaptation of the methods of Amick & Toland (1981) to show the convergence of periodic waves to solitary waves in the long-wave limit. In addition, it is shown how the classical integral equation formulation due to Nekrasov leads, via the Maximum Principle, to new results about qualitative features of periodic waves for which there has long been a global existence theory (Krasovskii 1961, Keady & Norbury 1978).


2016 ◽  
Vol 810 ◽  
pp. 5-24 ◽  
Author(s):  
M. Hirata ◽  
S. Okino ◽  
H. Hanazaki

Capillary–gravity waves resonantly excited by an obstacle (Froude number: $Fr=1$) are investigated by the numerical solution of the Euler equations. The radiation of short waves from the long nonlinear waves is observed when the capillary effects are weak (Bond number: $Bo<1/3$). The upstream-advancing solitary wave radiates a short linear wave whose phase velocity is equal to the solitary waves and group velocity is faster than the solitary wave (soliton radiation). Therefore, the short wave is observed upstream of the foremost solitary wave. The downstream cnoidal wave also radiates a short wave which propagates upstream in the depression region between the obstacle and the cnoidal wave. The short wave interacts with the long wave above the obstacle, and generates a second short wave which propagates downstream. These generation processes will be repeated, and the number of wavenumber components in the depression region increases with time to generate a complicated wave pattern. The upstream soliton radiation can be predicted qualitatively by the fifth-order forced Korteweg–de Vries equation, but the equation overestimates the wavelength since it is based on a long-wave approximation. At a large Bond number of $Bo=2/3$, the wave pattern has the rotation symmetry against the pattern at $Bo=0$, and the depression solitary waves propagate downstream.


Sign in / Sign up

Export Citation Format

Share Document