Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS·1V#3L and T1DL·1V#3S and their effect on grain quality

Euphytica ◽  
2010 ◽  
Vol 175 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Wanchun Zhao ◽  
Lili Qi ◽  
Xiang Gao ◽  
Gaisheng Zhang ◽  
Jian Dong ◽  
...  
2021 ◽  
Vol 41 (10) ◽  
Author(s):  
Kai Qi ◽  
Haiming Han ◽  
Jinpeng Zhang ◽  
Shenghui Zhou ◽  
Xiuquan Li ◽  
...  

2016 ◽  
Vol 129 (12) ◽  
pp. 2359-2368 ◽  
Author(s):  
Wenxuan Liu ◽  
Dal-Hoe Koo ◽  
Bernd Friebe ◽  
Bikram S. Gill

2016 ◽  
Vol 40 (2) ◽  
pp. 371-377
Author(s):  
Mingxing Wen ◽  
Yigao Feng ◽  
Juan Chen ◽  
Tongde Bie ◽  
Yuhui Fang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 399
Author(s):  
Baicui Wang ◽  
Xiaolan Ma ◽  
Xingguo Ye ◽  
Yilin Zhou ◽  
Youzhi Ma ◽  
...  

A wheat 660K chip was used to genotype two wheat-Dasypyrum villosum 6V#4S.6DL and 6V#2S.6AL translocation lines (A303 and B303) and their common wheat recurrent parent Wan7107. The results showed that these three lines have similar characteristics of base composition except for the translocation chromosomes. The alien translocation chromosomes have fewer homozygous and more heterozygous genotypes with more invalid probes. Distributions of SNPs between the translocation lines and Wan7107 were mainly dense on the regions of 6AS or 6DS as expected, but unexpectedly also on near the telomere of 2BS, and some regions of other wheat chromosomes. Meanwhile, the translocation lines A303 and B303 have 99.44% and 98.81% identical genotypes to Wan7107, respectively. Under the same genetic background, A303 and B303 showed different reactions to Blumeria graminis f. sp. tritici (Bgt) strains of powdery mildew. Both translocation lines have higher grain weight and plant height, and B303 has fewer spikelets compared to Wan7107. These results provide us a new insight into the genomic variation between the backcross generation plant and the recurrent parent, which is valuable information for understanding the relationship between wheat and the 6VS chromosome of D. villosum as well as the application potential of the alien chromosome arms.


2015 ◽  
Vol 128 (12) ◽  
pp. 2415-2425 ◽  
Author(s):  
Ruiqi Zhang ◽  
Fu Hou ◽  
Yigao Feng ◽  
Wei Zhang ◽  
Mingyi Zhang ◽  
...  

2019 ◽  
Vol 74 (1) ◽  
pp. 5-14
Author(s):  
GRZEGORZ SZUMIŁO ◽  
LESZEK RACHOŃ ◽  
BARBARA KROCHMAL-MARCZAK

The 3-year experiment was concerned with the response of spring forms of common wheat (Triticum aestivum L. subsp. aestivum), durum wheat (Triticum durum Desf.) and spelt wheat (Triticum aestivum subsp. spelta L. em. Thell.) to the foliar application of a plant growth stimulant (extract from marine algae Ecklonia maxima), with the commercial name of Kelpak SL (GS), as compared to control treatment (C). The following parameters were analysed: yield of grain, yield components (number of ears, weight of 1000 kernels, number and weight of kernels per ear) and physical indicators of grain quality (test weight, uniformity and vitreosity of grain). The study showed that the level of yielding and the yield components were related primarily with the wheat genotype, but they depended also on the agro-climatic conditions and on the algae extract and control experimental treatments. The application of algae extract, compared to the control, caused a significant increase in the yields of the spring wheat species under study, on average by 7.0%. Canopy spraying with algae extract had a favourable effect on the number of ears, on he number and weight of kernels per ear, but it had no effect on the weight of 1000 kernels. The grain quality of durum wheat, spelt wheat and common wheat was affected more strongly by the weather conditions in the successive years of the study and by the genotype than by the foliar application of algae extract. The spelt genotypes were characterised by lower yields and lower grain quality than common wheat and the durum wheat genotypes.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 277
Author(s):  
Alejandro Copete-Parada ◽  
Carmen Palomino ◽  
Adoración Cabrera

The P genome of Agropyron cristatum Gaertn. contains many desirable genes that can be utilized as genetic resources to improve wheat. In this research, we used both the gametocidal chromosome 2Cc and the pairing homologous gene (Ph1b) mutant to induce structural aberrations and translocations between wheat and the 4P, 5P, and 6P genome chromosomes. By using the two approaches, a total of 19 wheat-A. cristatum translocations have been identified, in which 13 were induced by the Triticum aestivum cv. Chinese Spring (CS) ph1b mutant (CS ph1b) and six were induced by gametocidal chromosome 2Cc from Aegilops cylindrica Host. The wheat-4P, -5P and -6P A. cristatum translocations were characterized by in situ hybridization and by a set of conserved orthologous set (COS) molecular markers. The aberrations included centromeric translocations, terminal translocations, dicentric translocations, and deletions. The average induction frequency of chromosome structural aberrations was 10.9% using gametocidal 2Cc chromosome and 8.8% using ph1b mutant. The highest frequency obtained was for chromosome 4P using both approaches. All the wheat-A. cristatum translocation lines obtained were valuable for identifying A. cristatum chromosome 4P, 5P, and 6P related genes. In addition, these lines provided genetic resources and new germplasm accessions for the genetic improvement of wheat.


2015 ◽  
Vol 25 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Imran Sheikh ◽  
Prachi Sharma ◽  
Shailender Kumar Verma ◽  
Satish Kumar ◽  
Sachin Malik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document