Nash versus coarse correlation
Abstract We run a laboratory experiment to test the concept of coarse correlated equilibrium (Moulin and Vial in Int J Game Theory 7:201–221, 1978), with a two-person game with unique pure Nash equilibrium which is also the solution of iterative elimination of strictly dominated strategies. The subjects are asked to commit to a device that randomly picks one of three symmetric outcomes (including the Nash point) with higher ex-ante expected payoff than the Nash equilibrium payoff. We find that the subjects do not accept this lottery (which is a coarse correlated equilibrium); instead, they choose to play the game and coordinate on the Nash equilibrium. However, given an individual choice between a lottery with equal probabilities of the same outcomes and the sure payoff as in the Nash point, the lottery is chosen by the subjects. This result is robust against a few variations. We explain our result as selecting risk-dominance over payoff dominance in equilibrium.