scholarly journals Exploring solar-terrestrial interactions via multiple imaging observers

Author(s):  
G. Branduardi-Raymont ◽  
M. Berthomier ◽  
Y. V. Bogdanova ◽  
J. A. Carter ◽  
M. Collier ◽  
...  

AbstractHow does solar wind energy flow through the Earth’s magnetosphere, how is it converted and distributed? is the question we want to address. We need to understand how geomagnetic storms and substorms start and grow, not just as a matter of scientific curiosity, but to address a clear and pressing practical problem: space weather, which can influence the performance and reliability of our technological systems, in space and on the ground, and can endanger human life and health. Much knowledge has already been acquired over the past decades, particularly by making use of multiple spacecraft measuring conditions in situ, but the infant stage of space weather forecasting demonstrates that we still have a vast amount of learning to do. A novel global approach is now being taken by a number of space imaging missions which are under development and the first tantalising results of their exploration will be available in the next decade. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we propose the next step in the quest for a complete understanding of how the Sun controls the Earth’s plasma environment: a tomographic imaging approach comprising two spacecraft in highly inclined polar orbits, enabling global imaging of magnetopause and cusps in soft X-rays, of auroral regions in FUV, of plasmasphere and ring current in EUV and ENA (Energetic Neutral Atoms), alongside in situ measurements. Such a mission, encompassing the variety of physical processes determining the conditions of geospace, will be crucial on the way to achieving scientific closure on the question of solar-terrestrial interactions.

2020 ◽  
Author(s):  
Pedro Corona-Romero ◽  
Pete Riley

Abstract. Earth-directed coronal mass ejections (CMEs) are of an important interest for space weather purposes, because they are precursors of the major geomagnetic storms. The geoeffectiveness of a CME mostly relies on its physical properties like magnetic field and speed. There are multiple efforts in the literature to estimate in situ transit profiles of CMEs, most of them based on numerical codes. In this work we present a semi-empirical formalism to compute in situ transit profiles of Earth-directed fast halo CMEs. Our formalism combines analytic models and empirical relations to approximate CME properties as would be seen by a spacecraft near the Earth's orbit. We use our formalism to calculate synthetic transit profiles for 10 events, including the Bastille day event and three varSITI Campaign events. Our results showed qualitative agreement with in situ measurements. Synthetic profiles of speed, magnetic intensity, density and temperature of protons had average errors of 10 %, 27 %, 46 % and 83 %, respectively. Additionally, we also computed the travel time of CME centers, with an average error of 9 %. We found that compression of CMEs by the surrounding solar wind significantly increased our uncertainties. We also outline a possible path to apply this formalism into a space weather forecasting tool.


2020 ◽  
Vol 38 (3) ◽  
pp. 657-681
Author(s):  
Pedro Corona-Romero ◽  
Pete Riley

Abstract. Earth-directed coronal mass ejections (CMEs) are of particular interest for space weather purposes, because they are precursors of major geomagnetic storms. The geoeffectiveness of a CME mostly relies on its physical properties like magnetic field and speed. There are multiple efforts in the literature to estimate in situ transit profiles of CMEs, most of them based on numerical codes. In this work we present a semi-empirical formalism to compute in situ transit profiles of Earth-directed fast halo CMEs. Our formalism combines analytic models and empirical relations to approximate CME properties as would be seen by a spacecraft near Earth's orbit. We use our formalism to calculate synthetic transit profiles for 10 events, including the Bastille Day event and 3 varSITI Campaign events. Our results show qualitative agreement with in situ measurements. Synthetic profiles of speed, magnetic intensity, density, and temperature of protons have average errors of 10 %, 27 %, 46 %, and 83 %, respectively. Additionally, we also computed the travel time of CME centers, with an average error of 9 %. We found that compression of CMEs by the surrounding solar wind significantly increased our uncertainties. We also outline a possible path to apply this formalism in a space weather forecasting tool.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuela Temmer

AbstractThe Sun, as an active star, is the driver of energetic phenomena that structure interplanetary space and affect planetary atmospheres. The effects of Space Weather on Earth and the solar system is of increasing importance as human spaceflight is preparing for lunar and Mars missions. This review is focusing on the solar perspective of the Space Weather relevant phenomena, coronal mass ejections (CMEs), flares, solar energetic particles (SEPs), and solar wind stream interaction regions (SIR). With the advent of the STEREO mission (launched in 2006), literally, new perspectives were provided that enabled for the first time to study coronal structures and the evolution of activity phenomena in three dimensions. New imaging capabilities, covering the entire Sun-Earth distance range, allowed to seamlessly connect CMEs and their interplanetary counterparts measured in-situ (so called ICMEs). This vastly increased our knowledge and understanding of the dynamics of interplanetary space due to solar activity and fostered the development of Space Weather forecasting models. Moreover, we are facing challenging times gathering new data from two extraordinary missions, NASA’s Parker Solar Probe (launched in 2018) and ESA’s Solar Orbiter (launched in 2020), that will in the near future provide more detailed insight into the solar wind evolution and image CMEs from view points never approached before. The current review builds upon the Living Reviews article by Schwenn from 2006, updating on the Space Weather relevant CME-flare-SEP phenomena from the solar perspective, as observed from multiple viewpoints and their concomitant solar surface signatures.


2021 ◽  
pp. 42-46
Author(s):  
ANASTASIA SERGEEVNA NADTOCHY ◽  
◽  
DMITRIY VLADIMIROVICH FOMIN ◽  

The paper presents information on the results of short-term space weather forecasting for the Vostochny cosmodrome based on data on the electron flux density with energies above 2 MeV received from satellites from the operator's site of the Space Weather Forecast Center of the Moscow State University Institute of Nuclear Physics. The analysis of the calculated data on the level of near-Earth radiation, as a result of the use of various extrapolation methods, showed that the method of exponential smoothing is most effective for short-term space weather forecasting. Such forecasts can be used when planning launches of launch vehicles from spaceports.


Author(s):  
Rainer A. Dressler ◽  
Gregory P. Ginet ◽  
Skip Williams ◽  
Brian Hunt ◽  
Shouleh Nikzad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document