Clean Agent System Utilizing FM-200® and Automatic Sprinkler System

2006 ◽  
Vol 43 (1) ◽  
pp. 3-27
Author(s):  
Eric W. Forssell ◽  
Mark L. Robin ◽  
Steven T. Ginn ◽  
Lance D. Harry
2021 ◽  
Vol 30 (1) ◽  
pp. 42-53
Author(s):  
L. T. Tanklevskiy ◽  
A. A. Tarantsev ◽  
O. A. Zybina ◽  
I. A. Babikov

Introduction. Сases of ineffective activation of automatic sprinkler fire-fighting systems (AFFS), designed pursuant to current standards, have made it necessary to address the following three issues: a) identification of reasons for ineffective activation; b) examination of AFFS systems to ensure their successful activation in case of fire; c) making a list of recommendations for AFFS designers. These issues can be resolved with reference to Appendix B to new SP (Construction Regulations) 485.13130.2020.Maximal critical height of sprinkler placement. Models of fire development were used to design the roof height limit and the AFFS bulb heating time. If the ceiling height exceeds the limit value, sprinklers cannot be activated in a timely manner. This leads to delays in the AFFS activation, and, as a result, the fire area exceeds the one safeguarded by the sprinkler.Acceptable sprinkler height. The analysis of fire scenarios and bulb heating models allows to more accurately project the feasibility of timely AFFS activation. This, in turn, allows to solve the three above listed problems.Using a differential heat detector to activate sprinklers. If it is established that the use of the AFFS, activating sprinklers by means of thermal destruction of a bulb, is ineffective in a given room, the feasibility of forced AFFS activation using a differential heat detector responding to the temperature rise in a room may be considered. The ratios, thus obtained, are applied to identify the acceptable height of premises protected by the AFFS equipped with such detectors. Problem solutions, including the identification of the reason for the ineffective operation of the AFFS, examination of the AFFS in operation, and provision of recommendations to designers, are demonstrated using the exhibition hall as an example.Conclusions. The above-mentioned problems are resolvable with the help of Appendix B to new Construction Regulations 485.13130.2020 and the above models.


2013 ◽  
Vol 405-408 ◽  
pp. 1861-1864
Author(s):  
Ruo Jun Wang ◽  
Bin Jiang ◽  
Yan Ying Xu

Fire prevention system of subway station plays an important role in ensuring passenger safety. The Shenyang Youth Street subway station fire prevention system safety was studied, applying performance-based fire protection design analysis method, using of FDS simulation software on the station fire prevention safety system for the calculation and analysis. Three working conditions were set when subway fire happens. Fire smoke flow characteristics and the distribution of temperature, CO concentration and visibility were analyzed and compared. The results show that the automatic sprinkler system and smoke control system have great effect on the preventing spread of fire. In the automatic sprinkler system and smoke control system conditions, fire hazards have not reached the standards of passengers tolerance.


Author(s):  
Elliot R. Berrin

The writer discusses the performance of automatic sprinkler systems, and their occasional failure to extinguish or control a fire when there is no obvious reason. Obvious reasons would include a shut water supply valve, a broken water main, an empty water tank, or any other water supply failure. This paper goes beyond the obvious.


Sign in / Sign up

Export Citation Format

Share Document