Looking beyond fertilizer: assessing the contribution of nitrogen from hydrologic inputs and organic matter to plant growth in the cranberry agroecosystem

2011 ◽  
Vol 91 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Sarah M. Stackpoole ◽  
Kevin R. Kosola ◽  
Beth Ann A. Workmaster ◽  
Nathan M. Guldan ◽  
Bryant A. Browne ◽  
...  
GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 628
Author(s):  
Hassan E. Abd Elsalam ◽  
Mohamed E. El- Sharnouby ◽  
Abdallah E. Mohamed ◽  
Bassem M. Raafat ◽  
Eman H. El-Gamal

Sewage sludge is an effective fertilizer in many soil types. When applied as an amendment, sludge introduces, in addition to organic matter, plant nutrients into the soil. When applied for cropland as a fertilizer, the mass loading of sewage sludge is customarily determined by inputs of N and/or P required to support optimal plant growth and a successful harvest. This study aims to examine the changes in organic matter contents and nitrogen forms in sludge-amended soils, as well as the growth of corn and faba bean plants. The main results indicated that there were higher responses to the corn and faba bean yields when sludge was added. Levels of organic carbon in soil were higher after maize harvest and decreased significantly after harvesting of beans, and were higher in sludge amended soils than unmodified soils, indicating the residual effect of sludge in soil. NO3−-N concentrations were generally higher in the soil after maize harvest than during the plant growth period, but this trend was not apparent in bean soil. The amounts of NH4+-N were close in the soil during the growth period or after the maize harvest, while they were higher in the soil after the bean harvest than they were during the growth period. Total nitrogen amounts were statistically higher in the soil during the growth period than those collected after the corn harvest, while they were approximately close in the bean soil. The total nitrogen amount in corn and bean leaves increased significantly in plants grown on modified sludge soil. There were no significant differences in the total nitrogen levels of the maize and beans planted on the treated soil.


2021 ◽  
Author(s):  
Hemlata Bagla ◽  
Asma Khan

<p>Earth’s regolith consists of a vital component that is lacking on other planets ­­– the pedosphere or soil body – that is rich in organic matter, soil fauna, minerals, water, gases, that together support life and is thus essential for plant growth. In stark contrast to our blue planet, Martian regolith is devoid of organic matter and contains crushed volcanic rocks, with high mineral content and toxic chemicals like perchlorates. Nevertheless, Martian and Lunar regolith simulants formulated by NASA, have been experimented for crop growth by addition of organic matter suitable to bind xenobiotics and provide ample nutrients, as an essential step towards expanding our horizon in the extensive field of soil sciences.</p><p>Soil is an ecosystem as a whole and acts as a modifier of planet Earth’s atmosphere. The organic matter present in it originates mainly from plant metabolites with the onset of senescence and humification. Humic substances thus formed in the pedosphere exhibit exceptional characteristics for soil conditioning. Besides providing nutrients and aeration to the soil, they interact and bind with toxic heavy metals, radionuclides, pesticides, industrial dyes, and other xenobiotics that may be present as pollutants in the ecosystem, thus acting as natural sieves. As top soils have maximum organic matter, essential for plant growth, phenomenon like soil erosion leave the soils devoid of humic substances. Another major reason for soil degradation is excessive salinity, leading to osmotic and ionic stress in plants, eventually reducing their growth. Addition of humic acid in soils provides protection against high saline stress and minimizes yield losses. In India, one of the leading agrarian countries, it is a common practice to enrich soils with manure, which is an inexpensive form of humus-boost for the crops. Such practices aid the cyclic flow of organic matter in the environment, against the background of widespread soil degradation.</p><p>Another global form of soil degradation is radioactive contamination of soils which occurs mainly due to nuclear accidents and improper practices of radioactive waste disposal. In order to explore such interactions with humic acid following Green technique, batch biosorption studies were performed over a range of parameters, with radionuclides Cs and Sr that are found in low level radioactive wastes. Biosorption percentages of 91±2% and 84±1% were obtained for Cs and Sr respectively. The technique is chemical-free and emphasizes the ‘nature for nature’ outlook of solving environmental problems. Humic acid and its various forms thus act as traps for radionuclides and work as excellent restorative soil stimulants that supplement depleted soils, boost plant growth, and play a vital role in sustaining life on Earth.</p>


2010 ◽  
Vol 20 (3) ◽  
pp. 594-602 ◽  
Author(s):  
John J. Sloan ◽  
Raul I. Cabrera ◽  
Peter A.Y. Ampim ◽  
Steve A. George ◽  
Wayne A. Mackay

Organic and inorganic amendments are often used to improve chemical and physical properties of soils. The objective of this study was to determine how the inclusion of light-weight expanded shale in various organic matter blends would affect plant performance. Four basic blends of organic growing media were prepared using traditional or alternative organic materials: 1) 75% pine bark (PB) + 25% sphagnum peatmoss (PM), 2) 50% PB + 50% wastewater biosolids (BS), 3) 100% municipal yard waste compost (compost), and 4) 65% PB + 35% cottonseed hulls (CH). Light-weight expanded shale was then blended with each of these mixtures at rates of 0%, 15%, 30%, and 60% (v/v). Vinca (Catharanthus roseus), verbena (Verbena hybrida), and shantung maple (Acer truncatum) were planted into the growing media after they were transferred into greenhouse pots. Vinca growth was monitored for 3 months before harvesting aboveground plant tissue to determine total biomass yield and elemental composition. Verbena growth was monitored for 6 months, during which time aboveground plant tissue was harvested twice to determine total biomass yield. Additionally, aboveground vinca plant tissue was analyzed for nutrients and heavy metal concentrations. In the absence of expanded shale, verbena and shantung maple trees produced more aboveground biomass in the 50-PB/50-BS blends, whereas vinca grew more biomass in the pure compost blends. Inclusion of expanded shale in the various organic matter blends generally had a negative effect on plant growth, with the exception of shantung maple growth in the 65-PB/35-CH blend. Reduced plant growth was probably due to a lower concentration of nutrients in the growing media. Macro- and micronutrient uptake was generally reduced by addition of expanded shale to the organic growing media. Results suggest that organic materials that have been stabilized through prior decomposition, such as compost or PM, are safe and reliable growing media, but expanded shale offers few benefits to a container growing medium except in cases where additional porosity is needed.


2007 ◽  
Vol 28 (3) ◽  
pp. 104 ◽  
Author(s):  
Margaret M Roper ◽  
Vadakattu V S R Gupta

Soils are much more than a porous medium for supporting plant growth. Soils are living, because they contain a wide range of microorganisms including bacteria, fungi, algae, protozoa, nematodes and other fauna including microarthropods, macroarthropods, termites and earthworms. All play a crucial role in the biological function of soils including decomposition of organic matter, nutrient transformations, biological control, development of soil structure to mention a few. Until recently the complexity of life in the soil has been difficult to unravel, but new DNA and biochemical tools are providing insights into its phenotypic and functional diversity and capability, and should drive the development of managements that nurture biodiversity and ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document