Soil-Structure Interaction of Steel Fiber Reinforced Concrete Slab Strips on a Geogrid Reinforced Subgrade

2015 ◽  
Vol 33 (3) ◽  
pp. 727-738 ◽  
Author(s):  
Olivia Hernandez ◽  
Hany El Naggar ◽  
Peter H. Bischoff
2020 ◽  
Vol 864 ◽  
pp. 9-18
Author(s):  
Mykola Surianinov ◽  
Stepan Neutov ◽  
Iryna Korneieva ◽  
Maryna Sydorchuk

Two models of hollow core slabs were tested: reinforced concrete and steel fiber concrete. When designing slab models, the proportions of full-sized structures were preserved for the further possibility of correct data comparison. As a result of testing models of hollow core slabs, it was found that the bearing capacity of a slab with combined reinforcement is 24% higher than that of reinforced concrete, the deflection is 36% less, and the crack resistance is 18% higher. The use of steel fiber made it possible to avoid the brittle fracture of a steel fiber reinforced concrete slab, which was observed in the model of a conventional reinforced concrete slab.


Author(s):  
Dapeng Yang ◽  
Bei Zhang ◽  
Guojun Liu

AbstractSteel-fiber reinforced concrete slabs have good blast and spall resistance. In this study, compression and splitting tensile experiments were carried out to obtain the basic quasi-static mechanical properties of the steel-fiber concrete specimens and the influence of steel-fiber parameters was revealed. In-field explosion experiments were performed to study the dynamic responses and damage modes of the steel-fiber reinforced concrete slabs. Five typical spall damage modes were observed, the distribution law of the spalling fragments was obtained, and the influence of steel-fiber shape, length, length–diameter ratio and volume percentage on the spall performance were revealed. These results will provide a basis for the application of steel-fiber reinforced concrete slabs in protective structures.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Sign in / Sign up

Export Citation Format

Share Document