Study on Foundation Deformation of Buildings in Mining Subsidence Area and Surface Subsidence Prediction

2018 ◽  
Vol 37 (3) ◽  
pp. 1755-1764 ◽  
Author(s):  
Zhanxin Liu ◽  
Boqiang Cui ◽  
Yanbo Liang ◽  
Hao Guo ◽  
Yangyang Li
2014 ◽  
Vol 641-642 ◽  
pp. 80-83
Author(s):  
Jia Zhong Zheng ◽  
Mei Zhu ◽  
Zheng Long Wang

The artical is based on the investigation of the basis of the status quo of Zhuxianzhuang and Luling coal mining subsidence area in Anhui province Suzhou city(hereinafter referred to as the "Zhu Lu subsidence area"), a preliminary analysis of the dynamic change trend of detention space in Zhu Lu subsidence area, and based on the hysteresis storage conditions of subsidence area, use the flood routing model to simulate the hysteresis effect of storage at different subsidence scenarios of different frequency flood. Finally, using the experience type channel evolution model and peak delay routing model further revealed storage effect on flood process of Zhu Lu subsidence area.


2020 ◽  
Vol 12 (4) ◽  
pp. 1528 ◽  
Author(s):  
Ximin Cui ◽  
Yuling Zhao ◽  
Guorui Wang ◽  
Bing Zhang ◽  
Chunyi Li

Exhausted or abandoned underground longwall mining may lead to long-term residual subsidence on surface land, which can cause some problems when the mined-out land is used for construction, land reclamation and ecological reconstruction. Thus, it is important to assess the stability and suitability of the land with a consideration of residual surface subsidence. Assuming a linear monotonic decrease in the annual residual surface subsidence, the limit of the sum of the annual residual subsidence factor, and continuity between surface subsidence in the last year of the weakening period and the residual surface subsidence in the first year, we establish a model to calculate the duration of residual subsidence and the annual residual surface subsidence factor caused by abandoned longwall coal mining. The duration of residual surface subsidence increases with the increase in mining thickness as well as the factor of extreme residual subsidence. The proposed method can quantitatively calculate the annual residual subsidence, the accumulative residual subsidence, and the potential future accumulative residual subsidence. This approach can be used to reasonably evaluate the stability and suitability of old mining subsidence areas and will be beneficial for the design of mining subsidence land reclamation and ecological reconstruction.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Hongkai Han ◽  
Jialin Xu ◽  
Xiaozhen Wang ◽  
Jianlin Xie ◽  
Yantuan Xing

Overburden conditions consisting of ultrathick and hard stratum (UTHS) are widespread in China and other countries, but existing surface subsidence prediction methods ignore the strong impact of UTHS on surface subsidence. They are thus not applicable for surface subsidence prediction for coal mining with the presence of UTHS. We conducted actual measurements of surface and UTHS subsidence in the Tingnan Coal Mine. The results showed that under the UTHS mining condition, the required gob dimension is much larger than the empirical value when the surface reaches sufficient mining and that the actual measured maximum value of surface subsidence is much smaller than the empirical value. The UTHS subsidence is approximately equal to the surface subsidence. The movement of UTHS has a strong impact on surface subsidence and has a controlling function for it. It was proposed that surface subsidence could be approximately predicted by calculating the UTHS subsidence. The UTHS movement characteristics were studied using Winkler’s theory of beams on an elastic foundation, the subsidence prediction equation of the main sections in the strike and dip directions was obtained under different mining dimensions, and the subsidence prediction equation of any arbitrary cross section parallel to the two main sections was established. Then, the surface subsidence prediction method for coal mining with the presence of UTHS was developed, and the influences of UTHS thickness, strength, and layer position on the surface subsidence were discussed. The Tingnan Coal Mine was taken as an example, and the subsidence curves of the strike and dip main sections were calculated using different mining dimensions. Subsequently, the surface subsidence after the mining of working faces 204, 205, 206, and 207, respectively, was predicted, and the prediction method was verified by comparing the results with the measured surface subsidence results of working faces 204, 205, and 206.


Sign in / Sign up

Export Citation Format

Share Document