Key Technique Study of Stability Control of Surrounding Rock in Deep Chamber with Large Cross-Section: A Case Study of the Zhangji Coal Mine in China

2020 ◽  
Vol 39 (1) ◽  
pp. 299-316
Author(s):  
Weijing Yao ◽  
Jianyong Pang ◽  
Jinsong Zhang ◽  
Guangcheng Liu
2015 ◽  
Vol 1089 ◽  
pp. 213-218
Author(s):  
Hao Xie ◽  
Feng Yin Zhang ◽  
He Guo ◽  
Bao Sen Zhang

In order to solve the issues of large deformation and difficult to support in Lu Cun coal mine-270m level shaft station, the reasons of damage to the original roadway supporting conditions have been analyzed through the field investigations. A composite supporting scheme which depend mostly on concrete-filled steel tubular (CFST) supports, spray the anchor net and surrounding rock grouting reinforcement technology as a supplement was designed. The cross-section of the supports is circular. The main steel pipe is 20# seamless steel pipe with diameter of 194mm and wall thickness of 8mm. It is shows that the composite supports can effectively control the deformation of surrounding rock of roadway and maintain long-term stability.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Bangyou Jiang ◽  
Lianguo Wang ◽  
Yinlong Lu ◽  
Shitan Gu ◽  
Xiaokang Sun

This paper presented a case study of the failure mechanisms and support design for deep composite soft rock roadway in the Yangcheng Coal Mine of China. Many experiments and field tests were performed to reveal the failure mechanisms of the roadway. It was found that the surrounding rock of the roadway was HJS complex soft rock that was characterized by poor rock quality, widespread development of joint fissures, and an unstable creep property. The major horizontal stress, which was almost perpendicular to the roadway, was 1.59 times larger than the vertical stress. The weak surrounding rock and high tectonic stress were the main internal causes of roadway instabilities, and the inadequate support was the external cause. Based on the failure mechanism, a new support design was proposed that consisted of bolting, cable, metal mesh, shotcrete, and grouting. A field experiment using the new design was performed in a roadway section approximately 100 m long. Detailed deformation monitoring was conducted in the experimental roadway sections and sections of the previous roadway. The monitoring results showed that deformations of the roadway with the new support design were reduced by 85–90% compared with those of the old design. This successful case provides an important reference for similar soft rock roadway projects.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjing Liu ◽  
Deyu Qian ◽  
Xingguo Yang ◽  
Sujian Wang ◽  
Jinping Deng ◽  
...  

Rock burst is a typical dynamic disaster in deep underground coal mining. Based on the support problems of the deep roadways in fully mechanized caving face 401111 of Hujiahe Coal Mine suffering from rock burst in Shaanxi Province of China, the failure law and influencing factors of the surrounding rock of the roadway are analyzed. The results show that the deformation of surrounding rock in the roadway shows the characteristics of elastic, plastic transformation, rheology, and expansion. At the same time, it has the typical characteristics of deep roadway, such as the fast deformation speed, long duration, asymmetric deformation, and large loose broken area of surrounding rock. Based on the principle of “strengthening support in shallow zones” and “deep pressure relief in deep zones” in the surrounding rock, the control scheme of surrounding rock in the return roadway of fully mechanized caving working face 401111 is proposed by taking the large diameter pressure relief and deep hole blasting as the main means of pressure relief. The practice shows that the surrounding rock of the return roadway is relatively stable after the implementation of the new scheme, which shows that the design of the new support scheme is reasonable and reliable. It is of great significance for the stability control of surrounding rock of the mining roadway suffering from rock burst.


2011 ◽  
Vol 255-260 ◽  
pp. 3711-3716 ◽  
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Numerical simulation and field measurement were carried out to investigate into laws of deformation and movement and the evolving characteristics of the plastic region around the roadway based on engineering conditions of deep soft rock roadway in Wangfenggang colliery, Huainan Mining area. The mechanism of controlling the surrounding rock stability of soft rock roadway in deep coal mine was demonstrated. The supporting of soft rock roadway in deep coal mine must be compatible with deformation and failure characteristics of surrounding rock, and it can keep the stability of surrounding rock. The combined supporting with high strength and prestress bolting-anchoring and integral surrounding rock grouting reinforcement can effectively control the surrounding rock deformation of soft rock roadway in deep coal mine. But every working step must be pay attention to sequence on the time and space so that it can play an integral supporting effect. Research results are put into practice accordingly and good control effect has been achieved.


2018 ◽  
Vol 38 ◽  
pp. 03041 ◽  
Author(s):  
Bo Wu ◽  
Wei Huang ◽  
Yong Bo Zhao

In the extra-large cross-section urban subway underground station projects, the key problem is to choose the appropriate excavation method and grasp the mechanical behavior of the surrounding rock after excavation. The double side drift method is widely used in the urban subway underground station construction with extra-large cross-section in China. This paper presents the deformation characteristics of the extra-large cross-section tunnel of urban subway and a comparison with the numerical simulation results. In the city subway underground excavation of large section station, the mechanical behavior of surrounding rock change and its influence on the surrounding area mainly depend on the selection of construction methods. The convergent deformation of tunnel cavern, the subsidence of the surface and the force failure of the surrounding rock associated the construction approaches are demonstrated. This study provides a more in-depth demonstration of the way to optimize the excavation method of the extra-large cross-section tunnel to achieve the purpose of controlling the deformation of the surface and surrounding rock.


2019 ◽  
Vol 104 ◽  
pp. 112-125 ◽  
Author(s):  
Shengrong Xie ◽  
Hao Pan ◽  
Junchao Zeng ◽  
En Wang ◽  
Dongdong Chen ◽  
...  

2013 ◽  
Vol 353-356 ◽  
pp. 1035-1039
Author(s):  
Chang Hui An ◽  
Gui Bin Zhang ◽  
Zhi Da Liu ◽  
Kai Zhao ◽  
Wei Guo ◽  
...  

The chambers of certain coal mine in Shandong such as central substation situate in soft rock which consists of mudstone and fine sandstone, etc. Obvious ground pressure behaviors, large deformation and failure of surrounding rock have serious effect on mine safety production, with the impact of various complicated deep large ground pressure. This paper presents a rational scheme to control the surrounding rock steadily, based on analysis of deformation and failure on large section soft rock chamber, combined with the concept of the" combined supporting technology of long and short anchors" and "the combined supporting technology of three anchors".


Sign in / Sign up

Export Citation Format

Share Document