scholarly journals Thermal Response Testing of a Thermal Pile in a Tropical Climate Region

Author(s):  
Fernando Saboya ◽  
Marina de Souza Ferreira ◽  
John Scott McCartney ◽  
Sérgio Tibana
2019 ◽  
Author(s):  
Honglei Liu ◽  
◽  
Yu-Feng F. Lin ◽  
Yu-Feng F. Lin ◽  
Andrew J. Stumpf ◽  
...  

2014 ◽  
Vol 50 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Valentin Wagner ◽  
Peter Bayer ◽  
Gerhard Bisch ◽  
Markus Kübert ◽  
Philipp Blum

2011 ◽  
Vol 347-353 ◽  
pp. 3087-3092
Author(s):  
Qiang Li ◽  
You Hong Sun ◽  
Xin Fang

Abstract. As a high efficiency, low consumption and clean energy, ground source heat pump technology has been pay more and more attention, the number of installation of system is growing rapidly. However, the use of geothermal resources is still extensive at this stage. Effective methods are pure in obtaining thermal physical parameters of geothermal wells around. In-situ thermal response testing is close to the real use of heat pumps, when injecting in or extracting heat from geothermal wells, the testing equipment will collect data, and then thermal physical parameters will be accurately calculate. This paper introduce a thermal response testing equipment, the equipment will add a constant cold or heat to geothermal well, circulating heat flow and pressure data is collected as well as temperature. And then thermal physical parameters of formation and heat exchanging performance are calculated.


2020 ◽  
Vol 12 (15) ◽  
pp. 6135 ◽  
Author(s):  
Ivan Julio Apolonio Callejas ◽  
Luciane Cleonice Durante ◽  
Eduardo Diz-Mellado ◽  
Carmen Galán-Marín

Climate change will bring changes to our living conditions, particularly in urban areas. Climate-responsive design strategies through courtyards can help to moderate temperatures and reduce the thermal stress of its occupants. Thermal response inside courtyard is affected not only by its morphological composition but also by subjective factors. Thus, standardized thermal scales may not reflect the stress of the occupants. This study investigated the impact on thermal attenuation provided by a courtyard located in a tropical climate under extreme cold and hot synoptic conditions by means of local thermal sensation scales. Microclimatic variables were monitored, simultaneously with the application of a thermal comfort questionnaire, by using weather stations installed outside and inside the courtyard. The Modified Physiological Equivalent Temperature Index (mPET) was utilized to predict the heat stress. Calibration was conducted using linear regression to attribute particular thermal sensation votes to correspondent mPET values. It was found that thermal sensation can be affected by factors such as psychological, behavioral, and physiological. The courtyard’s form provides a passive cooling effect, stabilizing interior thermal sensation, with attenuation peaks of 6.4 °C on a cold day and 5.0 °C on a hot day. Courtyards are an alternative passive strategy to improve thermal ambience in tropical climate, counterbalancing climate change.


2012 ◽  
Vol 71 (3) ◽  
pp. 435-445 ◽  
Author(s):  
Heiko T. Liebel ◽  
Kilian Huber ◽  
Bjørn S. Frengstad ◽  
Randi K. Ramstad ◽  
Bjørge Brattli

Energies ◽  
2017 ◽  
Vol 10 (6) ◽  
pp. 801 ◽  
Author(s):  
Angelo Zarrella ◽  
Giuseppe Emmi ◽  
Samantha Graci ◽  
Michele De Carli ◽  
Matteo Cultrera ◽  
...  

2020 ◽  
Vol 205 ◽  
pp. 06015
Author(s):  
Yaser Motamedi ◽  
Nikolas Makasis ◽  
Arul Arulrajah ◽  
Suksun Horpibulsuk ◽  
Guillermo Narsilio

Shallow geothermal energy utilises the ground at relatively shallow depths as a heat source or sink to efficiently heat and cool buildings. Geothermal pavement systems represent a novel concept where horizontal ground source heat pump systems (GSHP) are implemented in pavements instead of purpose-built trenches, thus reducing their capital costs. This paper presents a geothermal pavement system segment (20m × 10m) constructed and monitored in the city of Adelaide, Australia, as well as thermal response testing (TRT) results. Pipes have been installed in the pavement at 0.5 m depth, and several thermistors have been placed on the pipes and in the ground. A TRT has been performed with 6kW heating load to achieve an understanding of the thermal response of the system as well as to estimate the effective thermal conductivity of the ground. The results show that the conventional semi-log method may be applicable to determine the thermal conductivity for geothermal pavements. The geothermal heat exchanger at shallow depth is considerably under the influence of the ambient temperature; however, it is still acceptable for exchanging the heat within the ground. It is also concluded that the impact radius of heat exchanger in geothermal pavement during the TRT is around 0.5m in the vertical and horizontal directions for this case study.


Sign in / Sign up

Export Citation Format

Share Document