In Situ Thermal Response Test Methods And Practices

2011 ◽  
Vol 347-353 ◽  
pp. 3087-3092
Author(s):  
Qiang Li ◽  
You Hong Sun ◽  
Xin Fang

Abstract. As a high efficiency, low consumption and clean energy, ground source heat pump technology has been pay more and more attention, the number of installation of system is growing rapidly. However, the use of geothermal resources is still extensive at this stage. Effective methods are pure in obtaining thermal physical parameters of geothermal wells around. In-situ thermal response testing is close to the real use of heat pumps, when injecting in or extracting heat from geothermal wells, the testing equipment will collect data, and then thermal physical parameters will be accurately calculate. This paper introduce a thermal response testing equipment, the equipment will add a constant cold or heat to geothermal well, circulating heat flow and pressure data is collected as well as temperature. And then thermal physical parameters of formation and heat exchanging performance are calculated.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2700 ◽  
Author(s):  
Linden Jensen-Page ◽  
Fleur Loveridge ◽  
Guillermo A. Narsilio

Energy piles are a novel form of ground heat exchanger (GHE) used in ground source heat pump systems. However, characterizing the pile and ground thermal properties is more challenging than for traditional GHEs. Routine in-situ thermal response testing (TRT) methods assume that steady state conditions in the GHE are achieved within a few hours, whereas larger diameter energy piles may take days or even weeks, thereby incurring significant costs. Previous work on pile TRTs has focused on small diameters up to 450 mm. This paper makes the first rigorous assessment of TRT methods for larger diameter piles using field and laboratory datasets, the application of numerical and analytical modelling, and detailed consideration of costs and program. Three-dimensional numerical simulation is shown to be effective for assessing the data gathered but is too computationally expensive for routine practice. Simpler fast run time steady state analytical models are shown to be a theoretically viable tool where sufficient duration test data is available. However, a new assessment of signal to noise ratio (SNR) in real field data shows how power fluctuations cause increased uncertainty in long duration tests. It is therefore recommended to apply transient models or instead to carry out faster and more cost-effective borehole in-situ tests for ground characterization with analytical approaches for pile characterization.


2015 ◽  
Vol 1092-1093 ◽  
pp. 79-86
Author(s):  
Fu Li Qi ◽  
Yong Li Li ◽  
Meng Cai Zhang ◽  
Hui Jin ◽  
Yu Chun Bai ◽  
...  

Shallow geothermal energy is a new renewable high-quality clean energy that has aroused great interest of man for its renewability, huge stock, cleanness and high availability. Encouraged by the favorable policies of the government, shallow geothermal energy exploitation in geologically suitable areas has become a great priority. In this paper, principal rock-soil physical parameters are derived from field thermal response test set in the context of Qing’an, Suihua City, and subsurface temperature field is modeled to further establish the heat exchange performance parameters with a view to providing reference for the planning and proper deployment of GSHP-based shallow geothermal energy exploitation in this area.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Akustika ◽  
2020 ◽  
pp. 2-7
Author(s):  
Marián Flimel

Energy-efficient buildings utilise the potential of renewable sources, among which heat pumps hold an important position. As this technology has a secondary effect on the environment through its noise immission, locations of outdoor units in the exterior should be subjected to the assessment. The present article deals with the options of placing heat pumps in the exterior and the placement assessment methods. The noise burden identification through the assessment of the time exposure is presented in the example of an in situ measurement.


2019 ◽  
Author(s):  
Honglei Liu ◽  
◽  
Yu-Feng F. Lin ◽  
Yu-Feng F. Lin ◽  
Andrew J. Stumpf ◽  
...  

Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 286
Author(s):  
Roba M. Almuhtaseb ◽  
Ahmed Awadallah-F ◽  
Shaheen A. Al-Muhtaseb ◽  
Majeda Khraisheh

Polysulfone membranes exhibit resistance to high temperature with low manufacturing cost and high efficiency in the separation process. The composition of gases is an important step that estimates the efficiency of separation in membranes. As membrane types are currently becoming in demand for CO2/CH4 segregation, polysulfone will be an advantageous alternative to have in further studies. Therefore, research is undertaken in this study to evaluate two solvents: chloroform (CF) and tetrahydrofuran (THF). These solvents are tested for casting polymeric membranes from polysulfone (PSF) to separate every single component from a binary gas mixture of CO2/CH4. In addition, the effect of gas pressure was conducted from 1 to 10 bar on the behavior of the permeability and selectivity. The results refer to the fact that the maximum permeability of CO2 and CH4 for THF is 62.32 and 2.06 barrer at 1 and 2 bars, respectively. Further, the maximum permeability of CF is 57.59 and 2.12 barrer at 1 and 2 bars, respectively. The outcome selectivity values are 48 and 36 for THF and CF at 1 bar, accordingly. Furthermore, the study declares that with the increase in pressure, the permeability and selectivity values drop for CF and THF. The performance for polysulfone (PSF) membrane that is manufactured with THF is superior to that of CF relative to the Robeson upper bound. Therefore, through the results, it can be deduced that the solvent during in-situ synthesis has a significant influence on the gas separation of a binary mixture of CO2/CH4.


2013 ◽  
Vol 703 ◽  
pp. 282-286
Author(s):  
Ren Cai Zhang ◽  
Xiang Yu ◽  
Xing Ju Liu ◽  
Jin Hai Zhai ◽  
Zhen Wu Ning

An efficient automated milk detector based on freezing point depression is designed. This detector shares characters of high efficiency and good stability with accuracy and automation. Its main parts include temperature sensor of IC (Integrated Circuit), pinion-rack mechanism and crank-rocker mechanism and electronic control system. Monitoring in-situ change of milk freezing curve and developing efficiency of sampling can be available by means of pinion-rack mechanism and IC temperature sensor mechatronics design. As a result, adulterating status of milk can be discriminated in a rapid and accurate and automated way. The detector may be employed to detect liquid foods other than milk as well.


Sign in / Sign up

Export Citation Format

Share Document