GUP effect on thermodynamical properties of the noncommutative rotating BTZ black hole

2020 ◽  
Vol 35 (25) ◽  
pp. 2050208
Author(s):  
Ganim Gecim

In this paper, we investigated the quantum gravity effects on the thermal properties of the [Formula: see text]-dimensional noncommutative rotating Banados–Teitelboim–Zanelli (NCR-BTZ) black hole in the context of quantum tunneling of relativistic particles. These include Hawking temperature, the thermally local and global stability conditions, and the phase transitions. For this purpose, in the framework of the generalized uncertainty principle (GUP), we used the Hamilton–Jacobi approach to calculate the tunneling probability for a massive scalar, Dirac, and vector boson particles from the [Formula: see text]-dimensional NCR-BTZ black hole. We found that the modified Hawking temperature of the black hole depends on the black hole properties, on the tunneling particle properties, on the noncommutative parameter, and on the GUP parameter. Using the modified Hawking temperature, we calculated the modified heat capacity, and then we discussed the local thermodynamic stability conditions for the black hole. The black hole may undergo a first-type phase transition to become stable under the scalar particle tunneling whereas, it might undergoes both the first and the second-type phase transitions under the both Dirac and vector boson particles tunneling process. Furthermore, we calculated the Gibbs free energy of the black hole, and we investigated the global stability conditions. We observed that Hawking–Page phase transition may occur in the presence of the quantum gravity effect under the tunneling process of scalar, Dirac, and vector boson particles. In the context of quantum gravity effect, we also derived the modified equation of state to investigate the critical behavior of the commutative rotating BTZ black hole. Finally, we shown that Van der Waals-like phase transition may occur in the context of tunneling process of both Dirac and vector boson particle, whereas it may not occur for the tunneling of scalar particle.

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

Abstract The quantum gravity correction to the Hawking temperature of the 2+1 dimensional spinning dilaton black hole is studied by using the Hamilton-Jacobi approach in the context of the Generalized Uncertainty Principle (GUP). It is observed that the modified Hawking temperature of the black hole depends on both black hole and the tunnelling particle properties. Moreover, it is observed that the mass and the angular momentum of the scalar particle have the same effect on the Hawking temperature of the black hole, while the mass and total angular momentum (orbital+spin) of Dirac particle have different effect. Furthermore, the mass and total angular momentum (orbital+spin) of vector boson particle have a similar effect that of Dirac particle. Also, thermodynamical stability and phase transition of the black hole are discussed for scalar, Dirac and vector boson in the context of GUP, respectively. And, it is observed that the scalar particle probes the black hole as stable whereas, as for Dirac and vector boson particles, it might undergoes second-type phase transition to become stable while in the absence of the quantum gravity effect all of these particle probes the black hole as stable.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850070 ◽  
Author(s):  
I. Ablu Meitei ◽  
T. Ibungochouba Singh ◽  
S. Gayatri Devi ◽  
N. Premeshwari Devi ◽  
K. Yugindro Singh

Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein–Hawking entropy [Formula: see text], the inverse term of [Formula: see text] and terms with inverse powers of [Formula: see text], in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space–time.


2018 ◽  
Vol 33 (28) ◽  
pp. 1850164 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, using the Hamilton–Jacobi approach, we investigated the Hawking temperature of the (2 + 1)-dimensional Warped-AdS3 black hole by considering the generalized uncertainty principle (GUP) effect. In this connection, we calculated quantum mechanical tunneling probabilities of the scalar spin-0 and Dirac spin-[Formula: see text] particles from the black hole by using the modified Klein–Gordon and Dirac equations, respectively. Then, we observed that the Hawking temperature of the black hole depends not only on radius and angular velocity of the outer horizon of the black hole, but also on the angular velocity of the inner horizon of the black hole and the total angular momentum, energy and mass of a tunneling particle. In this case, the Hawking radiation of Dirac particle is different from that of the scalar particle. Moreover, this situation shows that the Hawking temperature calculated under the GUP may give us information about which sort of particle is tunneling. And, the direct dependence of the Hawking temperature to the inner horizon’s angular velocity makes the effect of the Chandrasekhar–Friedman–Schutz (CFS) mechanism more clear in the black hole physics.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050018
Author(s):  
T. Ibungochouba Singh ◽  
Y. Kenedy Meitei ◽  
I. Ablu Meitei

The Hawking radiation of BTZ black hole is investigated based on generalized uncertainty principle effect by using Hamilton–Jacobi method and Dirac equation. The tunneling probability and the Hawking temperature of the spin-1/2 particles of the BTZ black hole are investigated using the modified Dirac equation based on the GUP. The modified Hawking temperature for fermion crossing the black hole horizon includes the mass parameter of the black hole, angular momentum, energy and also outgoing mass of the emitted particle. Besides, considering the effect of GUP into account, the modified Hawking radiation of massless particle from a BTZ black hole is investigated using Damour and Ruffini method, tortoise coordinate transformation and modified Klein–Gordon equation. The relation between the modified Hawking temperature obtained by using Damour–Ruffini method and the energy of the emitted particle is derived. The original Hawking temperature is also recovered in the absence of quantum gravity effect. There is a possibility of negative Hawking temperature for emission of Dirac particles under quantum gravity effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
Myungseok Eune ◽  
Wontae Kim ◽  
Sang-Heon Yi

2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation formed by tunneling of a massive vector boson particle from the 2+1 dimensional new-type black hole was investigated. We used modified massive vector boson equation based on the GUP. Then, the Hamilton-Jacobi quantum tunneling approach was used to work out the tunneling probability of the massive vector boson particle and Hawking temperature of the black hole. Due to the GUP effect, the modified Hawking temperature was found to depend on the black hole properties, on the AdS3 radius, and on the energy, mass, and total angular momentum of the tunneling massive vector boson. In the light of these results, we also observed that modified Hawking temperature increases by the total angular momentum of the particle while it decreases by the energy and mass of the particle and the graviton mass. Also, in the context of the GUP, we see that the Hawking temperature due to the tunneling massive vector boson is completely different from both that of the spin-0 scalar and that of the spin-1/2 Dirac particles obtained in the previous study. We also calculate the heat capacity of the black hole using the modified Hawking temperature and then discuss influence of the GUP on the stability of the black hole.


2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Cenalo Vaz ◽  
Sashideep Gutti ◽  
Claus Kiefer ◽  
T. P. Singh ◽  
L. C. R. Wijewardhana

Sign in / Sign up

Export Citation Format

Share Document