scholarly journals Late time evolution of a nonminimally coupled scalar field system

2019 ◽  
Vol 51 (9) ◽  
Author(s):  
M. Shahalam ◽  
R. Myrzakulov ◽  
Maxim Yu. Khlopov
2012 ◽  
Vol 86 (10) ◽  
Author(s):  
M. Sami ◽  
M. Shahalam ◽  
M. Skugoreva ◽  
A. Toporensky
Keyword(s):  

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Genly Leon ◽  
Sebastián Cuéllar ◽  
Esteban González ◽  
Samuel Lepe ◽  
Claudio Michea ◽  
...  

AbstractScalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ γ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ γ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.


2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2019 ◽  
Vol 485 (4) ◽  
pp. 5073-5085 ◽  
Author(s):  
Victor P Debattista ◽  
Oscar A Gonzalez ◽  
Robyn E Sanderson ◽  
Kareem El-Badry ◽  
Shea Garrison-Kimmel ◽  
...  

Abstract We present the late-time evolution of m12m, a cosmological simulation of a Milky Way-like galaxy from the FIRE project. The simulation forms a bar after redshift z = 0.2. We show that the evolution of the model exhibits behaviours typical of kinematic fractionation, with a bar weaker in older populations, an X-shape traced by the younger, metal-rich populations, and a prominent X-shape in the edge-on mean metallicity map. Because of the late formation of the bar in m12m, stars forming after $10\mbox{$\:{\rm Gyr}$}$ (z = 0.34) significantly contaminate the bulge, at a level higher than is observed at high latitudes in the Milky Way, implying that its bar cannot have formed as late as in m12m. We also study the model’s vertex deviation of the velocity ellipsoid as a function of stellar metallicity and age in the equivalent of Baade’s Window. The formation of the bar leads to a non-zero vertex deviation. We find that metal-rich stars have a large vertex deviation (∼40°), which becomes negligible for metal-poor stars, a trend also found in the Milky Way, despite not matching in detail. We demonstrate that the vertex deviation also varies with stellar age and is large for stars as old as $9 \mbox{$\:{\rm Gyr}$}$, while $13\mbox{$\:{\rm Gyr}$}$ old stars have negligible vertex deviation. When we exclude stars that have been accreted, the vertex deviation is not significantly changed, demonstrating that the observed variation of vertex deviation with metallicity is not necessarily due to an accreted population.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050056
Author(s):  
Sunil Kumar Tripathy ◽  
Subingya Pandey ◽  
Alaka Priyadarsini Sendha ◽  
Dipanjali Behera

A bouncing scenario is studied in the framework of generalized Brans–Dicke theory. In order to have a dark energy (DE) driven late time cosmic acceleration, we have considered a unified dark fluid simulated by a linear equation of state (EoS). The evolutionary behavior of the DE equation of parameter derived from the unified dark fluid has been discussed. The effect of the bouncing scale factor on the Brans–Dicke parameter, self-interacting potential and the Brans–Dicke scalar field is investigated.


Sign in / Sign up

Export Citation Format

Share Document