scholarly journals Comparing the luminosity distance for gravitational waves and electromagnetic signals in a simple model of quadratic gravity

2020 ◽  
Vol 52 (11) ◽  
Author(s):  
G. Fanizza ◽  
G. Franchini ◽  
M. Gasperini ◽  
L. Tedesco

AbstractWe compute the modified friction coefficient controlling the propagation of tensor metric perturbations in the context of a generalized cosmological scenario based on a theory of gravity with quadratic curvature corrections. In such a context we discuss the differences between gravitational and electromagnetic luminosity distance, as well as the differences with the standard results based on the Einstein equations. We present numerical estimates of the modified luminosity distance on the cosmic redshift scale typical of Supernovae and standard sirens.

2018 ◽  
Vol 27 (14) ◽  
pp. 1830009
Author(s):  
Virginia Trimble

A large majority of the physics and astronomy communities are now sure that gravitational waves exist, can be looked for, and can be studied via their effects on laboratory apparatus as well as on astronomical objects. So far, everything found out has agreed with the predictions of general relativity, but hopes are high for new information about the universe and its contents and perhaps for hints of a better theory of gravity than general relativity (which even Einstein expected to come eventually). This is one version of the story, from 1905 to the present, told from an unusual point of view, because the author was, for 28.5 years, married to Joseph Weber, who built the first detectors starting in the early 1960s and operated one or more until his death on 30 September 2000.


2019 ◽  
Vol 209 ◽  
pp. 01036
Author(s):  
Dafne Guetta

Multimessenger observations may hold the key to learn about the most energetic sources in the universe. The recent construction of large scale observatories opened new possibilities in testing non thermal cosmic processes with alternative probes, such as high energy neutrinos and gravitational waves. We propose to combine information from gravitational wave detections, neutrino observations and electromagnetic signals to obtain a comprehensive picture of some of the most extreme cosmic processes. Gravitational waves are indicative of source dynamics, such as the formation, evolution and interaction of compact objects. These compact objects can play an important role in astrophysical particle acceleration, and are interesting candidates for neutrino and in general high-energy astroparticle studies. In particular we will concentrate on the most promising gravitational wave emitter sources: compact stellar remnants. The merger of binary black holes, binary neutron stars or black hole-neutron star binaries are abundant gravitational wave sources and will likely make up the majority of detections. However, stellar core collapse with rapidly rotating core may also be significant gravitational wave emitter, while slower rotating cores may be detectable only at closer distances. The joint detection of gravitational waves and neutrinos from these sources will probe the physics of the sources and will be a smoking gun of the presence of hadrons in these objects which is still an open question. Conversely, the non-detection of neutrinos or gravitational waves from these sources will be fundamental to constrain the hadronic content.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 558 ◽  
Author(s):  
Christian Corda

We show that, based on important reasons, differently from some recent claim in the literature, the YARK theory of gravity can reproduce neither the LIGO “GW150914 signal”, nor the other LIGO detections of gravitational waves (GWs).


2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450037 ◽  
Author(s):  
P. Prasia ◽  
V. C. Kuriakose

The generation of massive Gravitational Waves (GW) from metric f(R) theory of gravity is studied and the sensitivity of a spherical antenna detector towards such a wave is looked into. The energy sensitivity is maximum for the monopole mode of the sphere. Of the five quadrupole modes of a sphere, only three are triggered by a massive wave. Also, the sensitivity of a spherical antenna with mechanical resonators attached to it is studied. The Truncated Icosahedral Gravitational wave Antenna (TIGA), originally proposed for detecting the effect of massless GW on the quadrupole modes of a sphere, has been modified in this paper to get a Modified TIGA, in order to detect the sensitivity of monopole modes towards a massive wave.


2009 ◽  
Vol 160 (2) ◽  
pp. 1096-1100 ◽  
Author(s):  
S. S. Gershtein ◽  
A. A. Logunov ◽  
M. A. Mestvirishvili

Sign in / Sign up

Export Citation Format

Share Document