scholarly journals What are the wild waves saying? Yet another meditation on the predictions, searches for, and detections of gravitational waves

2018 ◽  
Vol 27 (14) ◽  
pp. 1830009
Author(s):  
Virginia Trimble

A large majority of the physics and astronomy communities are now sure that gravitational waves exist, can be looked for, and can be studied via their effects on laboratory apparatus as well as on astronomical objects. So far, everything found out has agreed with the predictions of general relativity, but hopes are high for new information about the universe and its contents and perhaps for hints of a better theory of gravity than general relativity (which even Einstein expected to come eventually). This is one version of the story, from 1905 to the present, told from an unusual point of view, because the author was, for 28.5 years, married to Joseph Weber, who built the first detectors starting in the early 1960s and operated one or more until his death on 30 September 2000.

2018 ◽  
Vol 27 (14) ◽  
pp. 1847015 ◽  
Author(s):  
C. S. Unnikrishnan ◽  
George T. Gillies

Gravitational waves propagate at the speed of light in general relativity, because of their special relativistic basis. However, light propagation is linked to the electromagnetic phenomena, with the permittivity and permeability constants as the determining factors. Is there a deeper reason why waves in a geometric theory of gravity propagate at a speed determined by electromagnetic constants? What is the relation between gravity’s own constants and the speed of gravitational waves? Our attempt to answer these fundamental questions takes us far and deep into the universe.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


Author(s):  
Mike Goldsmith

In 1916, Einstein published his theory of general relativity, which incorporated fundamentally new ideas about the nature of gravity, including that gravitational effects take time to travel. He also showed that under some circumstances, objects lose energy by emitting ‘ripples’ in time and space: gravitational waves. ‘Gravitational waves’ explains how these waves are very weak and only the most powerful events in the Universe generate strong enough versions to be detected. Gravitational waves differ from other kinds of waves as their only effect is to cause objects to move together and then apart again. They provide a unique new window on the Universe, allowing us to look deeper and further than ever before.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Surajit Kalita ◽  
Banibrata Mukhopadhyay

Abstract A number of recent observations have suggested that the Einstein’s theory of general relativity may not be the ultimate theory of gravity. The f(R) gravity model with R being the scalar curvature turns out to be one of the best bet to surpass the general relativity which explains a number of phenomena where Einstein’s theory of gravity fails. In the f(R) gravity, behaviour of the spacetime is modified as compared to that of given by the Einstein’s theory of general relativity. This theory has already been explored for understanding various compact objects such as neutron stars, white dwarfs etc. and also describing evolution of the universe. Although researchers have already found the vacuum spacetime solutions for the f(R) gravity, yet there is a caveat that the metric does have some diverging terms and hence these solutions are not asymptotically flat. We show that it is possible to have asymptotically flat spherically symmetric vacuum solution for the f(R) gravity, which is different from the Schwarzschild solution. We use this solution for explaining various bound orbits around the black hole and eventually, as an immediate application, in the spherical accretion flow around it.


2020 ◽  
pp. 2150003
Author(s):  
M. Novello ◽  
A. E. S. Hartmann

We analyze the gravitational waves within the Spinor Theory of Gravity (STG) and compare it with the General Relativity proposal. In the case of STG, a gravitational wave may occur if the effective gravitational metric induced by the spinorial field is Ricci flat.


Author(s):  
David M. Wittman

Orbits are ubiquitous in the universe: moons orbit planets, planets orbit stars, stars orbit around the center of the Milky Way galaxy, and so on. Any theory of gravity will have to explain the properties of all these orbits. To pave the way for developing the metric theory of gravity (general relativity) this chapter examines the basics of orbits as observed and as explained by the Newtonian model of gravity. We can use our understanding of gravity to infer the masses and other properties of these cosmic systems. Te chapter concludes with four optional sections in this spirit, covering the slingshot maneuver; dark matter; binary star orbits and how they reveal the masses of stars; and extrasolar planets.


2009 ◽  
Vol 24 (31) ◽  
pp. 2497-2505
Author(s):  
ANTONIO FEOLI

We calculate the amplitude of the de Broglie gravitational waves using the standard Einstein General Relativity. We find that these waves disappear in the limit ℏ→0 and when their source has a large mass and volume. From the experimental point of view, the knowledge of the amplitude allows to estimate the magnitude of the effect of the wave on a sphere of test particles. We propose also to measure a very special shift angle that does not change with time.


2005 ◽  
Vol 14 (12) ◽  
pp. 2341-2346 ◽  
Author(s):  
V. ALAN KOSTELECKÝ ◽  
ROBERTUS POTTING

In general relativity, gravitational waves propagate at the speed of light, and so gravitons are massless. The masslessness can be traced to symmetry under diffeomorphisms. However, another elegant possibility exists: masslessness can instead arise from spontaneous violation of local Lorentz invariance. We construct the corresponding theory of gravity. It reproduces the Einstein–Hilbert action of general relativity at low energies and temperatures. Detectable signals occur for sensitive experiments, and potentially profound implications emerge for our theoretical understanding of gravity.


Sign in / Sign up

Export Citation Format

Share Document