Region-specific changes in the immunoreactivity of TRPV4 expression in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis

2012 ◽  
Vol 43 (6) ◽  
pp. 625-631 ◽  
Author(s):  
Jae Chul Lee ◽  
Kyeung Min Joo ◽  
Soo Young Choe ◽  
Choong Ik Cha
Metallomics ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 1002-1011 ◽  
Author(s):  
J. B. Hilton ◽  
A. R. White ◽  
P. J. Crouch

It is unclear why ubiquitous expression of mutant SOD1 selectively affects the central nervous system in amyotrophic lateral sclerosis. Here we hypothesise that the central nervous system is primarily affected because, unlike other tissues, it has relatively limited capacity to satiate an increased requirement for Cu.


2002 ◽  
Vol 158 (4) ◽  
pp. 709-718 ◽  
Author(s):  
Stéphane Genoud ◽  
Corinna Lappe-Siefke ◽  
Sandra Goebbels ◽  
Freddy Radtke ◽  
Michel Aguet ◽  
...  

We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.


Sign in / Sign up

Export Citation Format

Share Document