Increased prevalence of concentric left ventricular hypertrophy in African-Americans: Will an epidemic of heart failure follow?

2006 ◽  
Vol 11 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Sandeep Kamath ◽  
David Markham ◽  
Mark H. Drazner
2019 ◽  
Vol 4 (1) ◽  
pp. 51 ◽  
Author(s):  
Ambarish Pandey ◽  
Neil Keshvani ◽  
Colby Ayers ◽  
Adolfo Correa ◽  
Mark H. Drazner ◽  
...  

2011 ◽  
pp. 119-125
Author(s):  
Thi Thuy Hang Nguyen

Objective: Prehypertensive individuals are at increased risk for developing hypertension and their complication. Many studies show that 2/3 prehypertensive individuals develop hypertension after 4 years. ECG and echocardiography are the routine tests used to assess LV mass. The objective of the research to determine the percentage of change in left ventricular morphology in the ECG, echocardiography, which explore the characteristics of left ventricular structural changes by echocardiography in pre-hypertensive subjects. Materials and method: We studied a total of 50 prehypertensive, 30 males (60%) and 20 females (40%), mean age 48.20±8.47years. 50 normotensive volunteers as control participants. These subjects were examined for ECG and echocardiography. Results: In prehypertensive group, with 18% of left ventricular hypertrophy on electrocardiogram, 12% of left ventricular hypertrophy on echocardiography; in the control group, we did not find any subjects with left ventricular hypertrophy. In the group with left ventricular hypertrophy, mostly eccentric left ventricular hypertrophy (83.33%), concentric left ventricular hypertrophy is 16.67%. Restructuring of left ventricular concentric for 15.9% of subjects without left ventricular hypertrophy on echocardiography. Conclusion: There have been changed in left ventricular morphology even in prehypertensive


Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
Abdullahi O Oseni ◽  
Waqas T Qureshi ◽  
Mohammed F Almahmoud ◽  
Alain Bertoni ◽  
David A Bluemke ◽  
...  

Background: Left ventricular hypertrophy (LVH) is an established risk factor for heart failure (HF). However, it is unknown whether LVH detected by electrocardiogram (ECG-LVH) is equivalent to LVH ascertained by cardiac magnetic resonance imaging (MRI-LVH) in terms of prediction of incident HF using risk prediction models like the Framingham Heart Failure Risk Score (FHFRS). Methods: This analysis included 4745 (mean age 61+10 years, 53.5% women, 61.7% non-whites) from the Multi-Ethnic Study of Atherosclerosis who were free of cardiovascular disease at the time of enrollment. ECG-LVH was defined using Cornell’s criteria while MRI-LVH was derived from left ventricular (LV) mass measured by cardiac MRI. Cox proportional hazard regression was used to examine the association between ECG-LVH and MRI-LVH with incident HF. Harrell’s concordance C-index was used to estimate the predictive ability of the FHFRS when either ECG-LVH or MRI-LVH were included as one of its components. The added predictive ability of ECG-LVH and MRI-LVH were investigated using integrated discrimination improvement (IDI) index and relative IDI. Results: ECG-LVH was present in 291(6.1%) while MRI-LVH was present in 499 (10.5%) of the participants. Over a median follow up of 10.4 years, 140 participants developed HF. Both ECG-LVH [HR (95% CI): 2.25(1.38-3.69)] and MRI-LVH [HR (95% CI): 3.80(1.56-5.63)] were associated with an increased risk of HF in multivariable adjusted models (Table 1). The ability of FHFRS to predict HF was improved with MRI-LVH (C-index 0.871, 95% CI: 0.842-0.899) when compared with ECG-LVH (C-index 0.860, 95% CI: 0.833-0.888) (p < 0.0001). To assess the potential clinical utility of using LVH-MRI instead of ECG-LVH, we calculated several measures of reclassification (Table 1), which were consistent with the statistically significantly improved C-statistic with MRI-LVH. Conclusion: Both ECG-LVH and MRI-LVH are predictive of HF when used in the FHFRS. Substituting MRI-LVH for ECG-LVH improves the predictive ability of the FHFRS.


1989 ◽  
Vol 257 (3) ◽  
pp. H1016-H1024 ◽  
Author(s):  
F. M. Siri ◽  
C. Nordin ◽  
S. M. Factor ◽  
E. Sonnenblick ◽  
R. Aronson

Left ventricular hypertrophy has been produced in the guinea pig by a procedure that gradually increases left ventricular afterload. A mildly constricting band was placed around the ascending aortas of very young guinea pigs (225–275 g). With growth to 500–1,000 g, left ventricular systolic pressure increased and left ventricular hypertrophy developed. In approximately 50% of these animals, the hypertrophy was associated with normal left ventricular function and with no unusual symptoms or evidence of heart failure. The other animals developed dyspnea, which appeared an average of 41 days after banding. Dyspneic animals had normal body weight, markedly increased right ventricular and lung weights, decreased left ventricular norepinephrine content, diminished maximum left ventricular pressure generating capacity, and a significantly higher incidence of left ventricular interstitial and perivascular fibrosis. These findings demonstrate that even when left ventricular overload is imposed gradually by banding the aortas of young animals, myocardial decompensation ultimately ensues in a significant proportion of such animals. The slow imposition of loading, the slow rate of decompensation, and the ability to identify animals in heart failure by clinical dyspnea make this model uniquely valuable for studies on the mechanisms of heart failure.


Sign in / Sign up

Export Citation Format

Share Document