gC1qR Antibody Can Modulate Endothelial Cell Permeability in Angioedema

Inflammation ◽  
2021 ◽  
Author(s):  
Marina Fandaros ◽  
Kusumam Joseph ◽  
Allen P. Kaplan ◽  
David A. Rubenstein ◽  
Berhane Ghebrehiwet ◽  
...  
1998 ◽  
Vol 275 (2) ◽  
pp. L203-L222 ◽  
Author(s):  
Timothy M. Moore ◽  
Paul M. Chetham ◽  
John J. Kelly ◽  
Troy Stevens

Pulmonary endothelium forms a semiselective barrier that regulates fluid balance and leukocyte trafficking. During the course of lung inflammation, neurohumoral mediators and oxidants act on endothelial cells to induce intercellular gaps permissive for transudation of proteinaceous fluid from blood into the interstitium. Intracellular signals activated by neurohumoral mediators and oxidants that evoke intercellular gap formation are incompletely understood. Cytosolic Ca2+ concentration ([Ca2+]i) and cAMP are two signals that importantly dictate cell-cell apposition. Although increased [Ca2+]ipromotes disruption of the macrovascular endothelial cell barrier, increased cAMP enhances endothelial barrier function. Furthermore, during the course of inflammation, elevated endothelial cell [Ca2+]idecreases cAMP to facilitate intercellular gap formation. Given the significance of both [Ca2+]iand cAMP in mediating cell-cell apposition, this review addresses potential sites of cross talk between these two intracellular signaling pathways. Emerging data also indicate that endothelial cells derived from different vascular sites within the pulmonary circulation exhibit distinct sensitivities to permeability-inducing stimuli; that is, elevated [Ca2+]ipromotes macrovascular but not microvascular barrier disruption. Thus this review also considers the roles of [Ca2+]iand cAMP in mediating site-specific alterations in endothelial permeability.


2021 ◽  
Vol 306 ◽  
pp. 198584
Author(s):  
Ramon D. Perez ◽  
Elena E. Gorbonova ◽  
Erich R. Mackow

1995 ◽  
Vol 82 (6) ◽  
pp. 1053-1058 ◽  
Author(s):  
Paul A. Grabb ◽  
Mark R. Gilbert

✓ The authors investigated the effects of glioma cells and pharmacological agents on the permeability of an in vitro blood-brain barrier (BBB) to determine the following: 1) whether malignant glia increase endothelial cell permeability; 2) how glucocorticoids affect endothelial cell permeability in the presence and absence of malignant glia; and 3) whether inhibiting phospholipase A2, the enzyme that releases arachidonic acid from membrane phospholipids, would reduce any malignant glioma—induced increase in endothelial cell permeability. Primary cultures of rat brain capillary endothelium were grown on porous membranes; below the membrane, C6, 9L rat glioma, T98G human glioblastoma, or no cells (control) were cocultured. Dexamethasone (0.1 µM), bromophenacyl bromide (1.0 µM), a phospholipase A2 inhibitor, or nothing was added to culture media 72 hours prior to assaying the rat brain capillary endothelium permeability. Permeability was measured as the flux of radiolabeled sucrose across the rat brain capillary endothelium monolayer and then calculated as an effective permeability coefficient (Pe). When neither dexamethasone nor bromophenacyl bromide was present, C6 cells reduced the Pe significantly (p < 0.05), whereas 9L and T98G cells increased Pe significantly (p < 0.05) relative to rat brain capillary endothelium only (control). Dexamethasone reduced Pe significantly for all cell preparations (p < 0.05). The 9L and T98G cell preparations coincubated with dexamethasone had the lowest Pe of all cell preparations. The Pe was not affected in any cell preparation by coincubation with bromophenacyl bromide (p > 0.45). These in vitro BBB experiments showed that: 1) malignant glia, such as 9L and T98G cells, increase Pe whereas C6 cells probably provide an astrocytic influence by reducing Pe; 2) dexamethasone provided significant BBB “tightening” effects both in the presence and absence of glioma cells; 3) the in vivo BBB is actively made more permeable by malignant glia and not simply because of a lack of astrocytic induction; 4) tumor or endothelial phospholipase A2 activity is probably not responsible for glioma-induced increased in BBB permeability; and 5) this model is useful for testing potential agents for BBB protection and for studying the pathophysiology of tumor-induced BBB disruption.


2012 ◽  
Vol 287 (9) ◽  
pp. 6582-6591 ◽  
Author(s):  
Lei Yuan ◽  
Alexandra Le Bras ◽  
Anastasia Sacharidou ◽  
Kiyoshi Itagaki ◽  
Yumei Zhan ◽  
...  

2019 ◽  
Vol 86 (6) ◽  
pp. 931-942 ◽  
Author(s):  
Byron Miyazawa ◽  
Alpa Trivedi ◽  
Padma Priya Togarrati ◽  
Daniel Potter ◽  
Gyulnar Baimukanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document