Generalized Thermoelastic Medium with Temperature-Dependent Properties for Different Theories under the Effect of Gravity Field

2013 ◽  
Vol 34 (3) ◽  
pp. 521-537 ◽  
Author(s):  
Mohamed I. A. Othman ◽  
Yassmin D. Elmaklizi ◽  
Samia M. Said
2019 ◽  
Vol 15 (2) ◽  
pp. 418-436 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Ramadan S. Tantawi ◽  
Mohamed I.M. Hilal

PurposeThe purpose of this paper is to report effect of rotation of micropolar thermoelastic solid with microtemperatures heated by laser pulses. The problem was solved analytically to obtain the expressions of the physical quantities.Design/methodology/approachThe analytical method used was the normal mode.FindingsNumerical results for the physical quantities were presented graphically and the results were analyzed. The comparisons were established in variant cases of the effects used and then shown graphically.Originality/valueIn the present work, the authors shall discuss the effect of rotation and temperature-dependent properties with the laser pulses in the micropolar thermoelastic medium with microtemperatures. This problem is very important in more empirical branches such as the human body and earthquake engineering.


2012 ◽  
Vol 625 ◽  
pp. 318-322 ◽  
Author(s):  
Yong Ping Liu ◽  
Shuan Hu Shi

The generalized thermoelastic diffusion problem with temperature-dependent properties is investigated in the context of the theory of generalized thermoelastic diffusion. The problem is solved by means of finite element method and the derived finite element equations are solved directly in time domain. The effects of diffusion and temperature-dependent properties on generalized thermoelastic wave and mass diffusion wave are studied in detail. The results show that all the considered variables have a non-zero value only in a bounded region and vanish identically beyond this region, the temperature-dependent properties act to reduce all the considered variables and the diffusion barely influences the considered variables.


2019 ◽  
Vol 24 (4) ◽  
pp. 53-65
Author(s):  
R.R. Gupta ◽  
R.R. Gupta

Abstract The present study deals with the propagation of waves in a transversely isotropic micropolar generalized thermoelastic material possessing temperature dependent elastic properties. After developing the solution for LS, GL and CT theory, the phase velocities and attenuation quality factor have been obtained. The expressions for amplitudes of stresses, displacements, microratation and temperature distribution have been derived and computed numerically. The numerically evaluated results have been plotted graphically. Some particular cases of interest have also been obtained.


2016 ◽  
Vol 12 (2) ◽  
pp. 362-383 ◽  
Author(s):  
Samia M Said

Purpose – The dual-phase-lag (DPL) model and Lord-Shulman theory with one relaxation time are applied to study the effect of the gravity field, the magnetic field, and the hydrostatic initial stress on the wave propagation in a two-temperature generalized thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The paper aims to discuss this issue. Design/methodology/approach – The exact expressions of the considered variables are obtained by using normal mode analysis. Findings – Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of the gravity field as well as the magnetic field. Comparisons are made between the results of the two different models with and without temperature dependent properties and for two different values of the hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time. Originality/value – In the present work, the author shall formulate a two-temperature generalized magneto-thermoelastic problem for a medium with temperature dependent properties and with an internal heat source that is moving with a constant speed under the influence of a gravity field and a hydrostatic initial stress. Normal mode analysis is used to obtain the exact expressions for the displacement components, thermodynamic temperature, conductive temperature, and stress components. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the L-S theory in the absence and presence of a magnetic field as well as a gravity field. Comparisons are also made between the results of the two theories with and without temperature dependent properties and for two different values of hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time.


Sign in / Sign up

Export Citation Format

Share Document