Determination and Modeling of Optimum Insulation Thickness for Thermal Insulation of Buildings in All City Centers of Turkey

Author(s):  
Ahmet Erhan Akan
2020 ◽  
pp. 174425912098002
Author(s):  
Malik Elmzughi ◽  
Samah Alghoul ◽  
Mohamed Mashena

An efficient way to reduce the energy required for conditioning buildings and therefore to reduce CO2 emission is the use of proper thermal insulation in buildings’ external walls. This measure requires data from metrological stations that can be used in the optimization of the thermal insulation. The main objectives of this study are to construct thermal climatic zones for Libya and to specify the optimum insulation thickness for external walls for the different zones. This work is comprehensive as the metrological data from all existing 33 weather stations has been collected and used for identifying thermal zones. For the optimization of the construction of external walls, the most commonly used local wall structures are investigated: hollow concrete block, limestone block and hollow brick. In addition, four thermal insulation materials: extruded polystyrene, expanded polystyrene, rock wool and foamed polyurethane are used with every wall type. Optimum insulation thickness, energy savings, energy cost and payback periods were estimated for the 33 locations using life cycle cost analysis. A map is constructed for the thermal zones based on degree-day values for the entire country. The results show that limestone blocks with expanded polystyrene insulation form the optimum wall construction as it provides the minimum total cost for all locations. Depending on the Degree-day values, the optimum insulation thickness varies between 5.4 and 15.3 cm across the country with energy saving varies between 28 and 178 $/m2. Using the optimum thickness, the average CO2 emissions can potentially be reduced by about 85%. Finally, a contour map represents the optimum thickness of expanded polystyrene is presented in this work.


Author(s):  
Derya B. O¨zkan ◽  
Cenk Onan

In Turkey, “Thermal Insulation Requirements for Buildings” was implemented to provide energy saving in buildings in 2000. After this, more then seven hundred thousand new buildings are constructed. Determining the correct material and optimum insulation thickness are very important issues in these buildings for thermal insulation. Calculations using monthly outdoor temperatures and solar radiation are done for XPS insulation material and 4 different climatic regions in Turkey. Natural gas, the most preferred in our country is selected as fuel. P1-P2 method is used to obtain energy saving and payback period. New correlations are specified to determine optimum insulation thickness depending on building heat gains and areas. Furthermore, buildings are categorized into three building class according to external wall area and floor/roof area. Effect of change in building external wall area, floor or roof area, window area to payback period, energy saving and optimum thickness are investigated. As a result, effect of architectural design is determined on thermal insulation. All calculation results are shown in a table for four different climatic regions and three different types of buildings which have the same gross volume.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2035-2046
Author(s):  
Cenk Onan ◽  
Serkan Erdem ◽  
Derya Ozkan ◽  
Cem Baykal

In this study, the optimum insulation thickness was calculated for the heating season for external walls in the different directions of a building. For this reason, a building used for housing in Istanbul, Turkey was taken as model. The indoor and outdoor temperatures, along with the interior and exterior surface temperatures of the building?s external walls, were continuously measured using thermocouples and recorded in four different directions throughout the year. The effects of solar radiation, which vary based on the direction, were assessed for the heat transfer through the external walls. The results of this study indicate that the optimum insulation thickness for the north, south, west, and east facing walls should be 6.47, 2.87, 6.97, and 6.98 cm, respectively, based on the differences in the amount of solar radiation exposure of the walls in the different directions. The optimum insulation thickness of the building?s external wall was calculated as 5.25 cm, regardless of its direction. An economic analysis of the thermal insulation cost was conducted using the P1-P2 method, and then the payback periods were calculated. The heating energy consumption of the building designed using the optimum insulation thicknesses, as identified separately based on the direction, decreased by 17%, compared to the present building with 3 cm of thermal insulation.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


2019 ◽  
Vol 10 (2) ◽  
pp. 59-66
Author(s):  
E. A Biryuzova ◽  
A. S Glukhanov

Through pipelines of heat networks, due to their large length, a large amount of thermal energy is lost. Identification of technical solutions related to improving the energy efficiency of heating networks is an urgent task at present. The article is devoted to the consideration of options for laying pipelines of heat networks during design work. In the conducted studies, two main methods of underground laying of pipelines of heat networks with the choice of the most energy-efficient, with minimal losses of thermal energy are considered. Channel and channelless laying methods are investigated with the same design features and technological conditions of operation of pipelines of heat networks using the same thermal insulation material. For each option, the required thickness of the thermal insulation is determined by the normalized density of the heat flow, thermal calculations are performed to determine the heat loss and the value of the temperature fields generated around the operating pipelines of the heat networks. The obtained values of the thermal insulation thickness in the channel method of laying pipelines are 30-50 % lower than those in channelless laying. The heat loss values, according to the results of the heat calculation for the options under consideration, in the channel method of laying are reduced by 47-65 %. The temperature fields formed around the pipelines of thermal networks with channelless laying significantly exceed the natural value of the soil temperature at the depth of the pipeline. What has a great influence on the determination of the distance to adjacent pipelines and other utilities, laid underground, in the zone of the thermal network. A comparative analysis of the results obtained makes it possible to single out the choice of the method of laying the pipeline into a group of measures aimed at energy saving and increasing energy efficiency in heating systems.


2016 ◽  
Vol 34 (S2) ◽  
pp. S561-S568 ◽  
Author(s):  
Filippo de’ Rossi ◽  
Marcello Marigliano ◽  
Concetta Marino ◽  
Francesco Minichiello

2010 ◽  
Vol 87 (2) ◽  
pp. 613-619 ◽  
Author(s):  
Alireza Bahadori ◽  
Hari B. Vuthaluru

Sign in / Sign up

Export Citation Format

Share Document