Kaluza-Klein Bulk Viscous Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant

2015 ◽  
Vol 54 (8) ◽  
pp. 2991-3003
Author(s):  
Namrata I. Jain ◽  
Shyamsunder S. Bhoga
2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Sanjay Oli

We have presented cosmological models in five-dimensional Kaluza-Klein space-time with a variable gravitational constant (G) and cosmological constant (Λ). We have investigated Einstein’s field equations for five-dimensional Kaluza-Klein space-time in the presence of perfect fluid with time dependent G and Λ. A variety of solutions have been found in which G increases and Λ decreases with time t, which matches with current observation. The properties of fluid and kinematical parameters have been discussed in detail.


1985 ◽  
Vol 38 (4) ◽  
pp. 547 ◽  
Author(s):  
Yun-Kau Lau

In an attempt to reconcile the large number hypothesis (LNH) with Einstein's theory of gravitation, a tentative generalization of Einstein's field equations with time-dependent cosmological and gravitational constants is proposed. A cosmological model consistent with the LNH is deduced. The coupling formula of the cosmological constant with matter is found, and as a consequence, the time-dependent formulae of the cosmological constant and the mean matter density of the Universe at the present epoch are then found. Einstein's theory of gravitation, whether with a zero or nonzero cosmological constant, becomes a limiting case of the new generalized field equations after the early epoch.


2003 ◽  
Vol 12 (05) ◽  
pp. 941-951 ◽  
Author(s):  
ANIRUDH PRADHAN ◽  
HARE RAM PANDEY

A plane-symmetric non-static cosmological model representing a bulk viscous fluid distribution has been obtained which is inhomogeneous and anisotropic and a particular case of which is gravitationally radiative. Without assuming any ad hoc law, we obtain a cosmological constant as a decreasing function of time. The physical and geometric features of the models are also discussed.


2017 ◽  
Vol 72 (4) ◽  
pp. 365-374 ◽  
Author(s):  
Gauranga Charan Samanta ◽  
Ratbay Myrzakulov ◽  
Parth Shah

Abstract:The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza–Klein space time. The bulk viscous coefficient (ξ) expressed as $\xi = {\xi _0} + {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}},$ where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ−1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to ${\xi _2}{{\ddot a} \over {\dot a}},$ hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to $\xi = {\xi _1}{{\dot a} \over a},$$\xi = {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}}$ and $\xi = {\xi _0} + {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}},$ so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.


1996 ◽  
Vol 11 (01) ◽  
pp. 1-7 ◽  
Author(s):  
JORGE L. LOPEZ ◽  
D.V. NANOPOULOS

We propose a new cosmological model with a time-dependent cosmological constant (Λ∝1/t2), which starting at the Planck time as [Formula: see text], evolves to the present-day allowed value of [Formula: see text]. This scenario is supported by noncritical string theory considerations. We compute the age of the Universe and the time dependence of the scale factor in this model, and find general agreement with recent determinations of the Hubble parameter for substantial values of ΩΛ. This effectively low-density open Universe model differs from the traditional cosmological constant model, and has observable implications for particle physics and cosmology.


2009 ◽  
Vol 24 (07) ◽  
pp. 1383-1415
Author(s):  
C. CASTRO ◽  
J. A. NIETO ◽  
L. RUIZ ◽  
J. SILVAS

Novel static, time-dependent and spatial–temporal solutions to Einstein field equations, displaying singularities, with and without horizons, and in several dimensions, are found based on a dimensional reduction procedure widely used in Kaluza–Klein-type theories. The Kerr–Newman black hole entropy as well as the Reissner–Nordstrom, Kerr and Schwarzschild black hole entropy are derived from the corresponding Euclideanized actions. A very special cosmological model based on the dynamical interior geometry of a black hole is found that has no singularities at t = 0 due to the smoothing of the mass distribution. We conclude with another cosmological model equipped also with a dynamical horizon and which is related to Vaidya's metric (associated with the Hawking radiation of black holes) by interchanging t ↔ r, which might render our universe a dynamical black hole.


Sign in / Sign up

Export Citation Format

Share Document