Schemes for Bidirectional Quantum Teleportation Via a Hyper-Entangled State

2018 ◽  
Vol 58 (2) ◽  
pp. 372-382 ◽  
Author(s):  
Jin Shi ◽  
Peng-cheng Ma ◽  
Gui-Bin Chen
2020 ◽  
Vol 34 (28) ◽  
pp. 2050261
Author(s):  
Vikram Verma

We propose a novel scheme for faithful bidirectional quantum teleportation (BQT) in which Alice can transmit an unknown N-qubit entangled state to Bob and at the same time Bob can transmit an unknown M-qubit entangled state to Alice by using a four-qubit entangled G-state as a quantum channel. We also propose a new scheme for cyclic QT of multi-qubit entangled states by using two G-states as a quantum channel. The advantage of our schemes is that it seems to be much simpler and requires reduced number of qubits in quantum channel as compared with the other proposed schemes.


Author(s):  
Jinwei Wang ◽  
Liping Huang

In this paper, an asymmetric bidirectional controlled quantum teleportation via a six-qubit partially entangled state is given, in which Alice wants to transmit a two-qubit entangled state to Bob and Bob wants to transmit a single-qubit state to Alice on the same time. Although the six-qubit state as quantum channel is partially entangled, the teleportation is implemented deterministically. Furthermore, only Bell-state measurements, single-qubit measurements and some unitary operations are needed in the scheme.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dong-Gil Im ◽  
Chung-Hyun Lee ◽  
Yosep Kim ◽  
Hyunchul Nha ◽  
M. S. Kim ◽  
...  

AbstractQuantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and quantum communication.


2021 ◽  
pp. 2150249
Author(s):  
Vikram Verma

In this paper, by utilizing a nine-qubit entangled state as a quantum channel, we propose new schemes for symmetric and asymmetric cyclic controlled quantum teleportation (CYCQT). In our proposed schemes, four participants Alice, Bob, Charlie and David teleport their unknown quantum states cyclically among themselves with the help of a controller Eve. No participants can reconstruct the original states sent from the respective senders without the permission of the controller. Also, by considering same nine-qubit entangled state as a quantum channel, we propose a generalized scheme for CYCQT of multi-qubit states. In contrast to the previous CYCQT schemes involving three communicators and a controller, there are four communicators and a controller in the proposed schemes. Also, compared with previous CYCQT schemes, our proposed CYCQT schemes require less consumption of quantum resource and the intrinsic efficiency of the generalized scheme increases with the increase of number of qubits in the information states.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 352 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Yi-Tao Gou ◽  
Jin-Xing Hou ◽  
Li-Ke Cao ◽  
Xiao-Hui Wang

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.


2018 ◽  
Vol 4 (10) ◽  
pp. eaas9401 ◽  
Author(s):  
Meiru Huo ◽  
Jiliang Qin ◽  
Jialin Cheng ◽  
Zhihui Yan ◽  
Zhongzhong Qin ◽  
...  

Quantum teleportation, which is the transfer of an unknown quantum state from one station to another over a certain distance with the help of nonlocal entanglement shared by a sender and a receiver, has been widely used as a fundamental element in quantum communication and quantum computation. Optical fibers are crucial information channels, but teleportation of continuous variable optical modes through fibers has not been realized so far. Here, we experimentally demonstrate deterministic quantum teleportation of an optical coherent state through fiber channels. Two sub-modes of an Einstein-Podolsky-Rosen entangled state are distributed to a sender and a receiver through a 3.0-km fiber, which acts as a quantum resource. The deterministic teleportation of optical modes over a fiber channel of 6.0 km is realized. A fidelity of 0.62 ± 0.03 is achieved for the retrieved quantum state, which breaks through the classical limit of1/2. Our work provides a feasible scheme to implement deterministic quantum teleportation in communication networks.


2020 ◽  
Vol 29 (2) ◽  
pp. 228-232
Author(s):  
Yang Huang ◽  
Wei Yang

Sign in / Sign up

Export Citation Format

Share Document