scholarly journals Optimal teleportation via noisy quantum channels without additional qubit resources

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dong-Gil Im ◽  
Chung-Hyun Lee ◽  
Yosep Kim ◽  
Hyunchul Nha ◽  
M. S. Kim ◽  
...  

AbstractQuantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and quantum communication.

2007 ◽  
Vol 05 (05) ◽  
pp. 673-683 ◽  
Author(s):  
YU-LING LIU ◽  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA

We explicitly present two schemes for quantum teleportation of an arbitrary N-qubit entangled state using, respectively, non-maximally entangled Bell states and GHZ states as the quantum channels, and generalized Bell states as the measurement basis. The scheme succeeds with unit fidelity but less than unit probability. By introducing additional qubit and unitary operations, the success probability of these two schemes can be increased.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 352 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Yi-Tao Gou ◽  
Jin-Xing Hou ◽  
Li-Ke Cao ◽  
Xiao-Hui Wang

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


2018 ◽  
Vol 8 (10) ◽  
pp. 1935
Author(s):  
Mihai-Zicu Mina ◽  
Pantelimon Popescu

In the practical context of quantum networks, the most reliable method of transmitting quantum information is via teleportation because quantum states are highly sensitive. However, teleportation consumes a shared maximally entangled state. Two parties Alice and Bob located at separate nodes that wish to reestablish their shared entanglement will not send entangled qubits directly to achieve this goal, but rather employ a more efficient mechanism that ensures minimal time resources. In this paper, we present a quantum routing scheme that exploits entanglement swapping to reestablish consumed entanglement. It improves and generalizes previous work on the subject and reduces the entanglement distribution time by a factor of 4 k in an arbitrary scale quantum network, where N = 4 k - 1 is a required number of quantum nodes located between source and destination. In addition, k is the greatest positive integer considered by Alice or Bob, such that afterwards they choose N quantum switches.


2011 ◽  
Vol 09 (supp01) ◽  
pp. 389-403 ◽  
Author(s):  
ANIRBAN PATHAK ◽  
ANINDITA BANERJEE

An efficient and economical scheme is proposed for the perfect quantum teleportation of n-qubit non-maximally entangled state of generalized Bell-type. A Bell state is used as the quantum channel in the proposed scheme. It is also shown that the controlled teleportation of this n-qubit state can be achieved by using a GHZ state or a GHZ-like state as quantum channel. The proposed schemes are economical because for the perfect and controlled teleportation of n-qubit non-maximally entangled state of generalized Bell-type, we only need a Bell state and a tripartite entangled state respectively. It is also established that there exists a family of 12 orthogonal tripartite GHZ-like states which can be used as quantum channel for controlled teleportation. The proposed protocols are critically compared with the existing protocols.


2009 ◽  
Vol 07 (04) ◽  
pp. 755-770 ◽  
Author(s):  
YINXIANG LONG ◽  
DAOWEN QIU ◽  
DONGYANG LONG

In the past decades, various schemes of teleportation of quantum states through different types of quantum channels (a prior shared entangled state between the sender and the receiver), e.g. EPR pairs, generalized Bell states, qubit GHZ states, standard W states and its variations, genuine multiqubit entanglement states, etc., have been developed. Recently, three-qutrit quantum states and two-qudit quantum states have also been considered as quantum channels for teleportation. In this paper, we investigate the teleportation of an unknown qudit using a d level GHZ state, i.e. a three-qudit maximally entangled state, as quantum channel. We design a general scheme of faithful teleportation of an unknown qudit using a d-level GHZ state shared between the sender and the receiver, or among the sender, the receiver and the controller; an unknown two-qudit of Schmidt form using a d level GHZ state shared between the sender and the receiver; as well as an unknown arbitrary two-qudit using two shared d level GHZ states between the sender, the receiver and the controller, or using one shared d level GHZ state and one shared generalized Bell state. We obtain the general formulas of Alice's measurement basis, Charlie's measurement basis and Bob's unitary operations to recover the input state of Alice. It is intuitionistic to generalize the protocols of teleporting an arbitrary two-qudit state to teleporting an arbitrary n-qudit state.


2021 ◽  
Vol 68 (2) ◽  
pp. 2651-2663
Author(s):  
Zhen-Zhen Li ◽  
Zi-Chen Li ◽  
Xiu-Bo Chen ◽  
Zhiguo Qu ◽  
Xiaojun Wang ◽  
...  

2019 ◽  
Vol 34 (35) ◽  
pp. 1950290 ◽  
Author(s):  
Wanbin Zhang

Each of three nodes in a quantum network has two qubits. The total six qubits are in a maximally entangled state [Helwig et al., Phys. Rev. A 86, 052335 (2012)]. Using such an entangled state as quantum channel, we put forward three deterministic bidirectional quantum-controlled teleportation (BQCT) schemes. To be specific, BQCT can be realized between any two nodes in a deterministic manner with another as the control. Alternatively, the BQCT capacity of such state in the given qubit distribution is thus essentially revealed by virtue of the schemes.


Sign in / Sign up

Export Citation Format

Share Document