Analysis of a copolymer of methacrylic acid and butyl methacrylate using combined chromatographic techniques

2005 ◽  
Vol 60 (2) ◽  
pp. 152-155
Author(s):  
E. N. Viktorova ◽  
A. A. Korolev ◽  
A. A. Kurganov
2003 ◽  
Vol 19 (5) ◽  
pp. 775-777
Author(s):  
Kiyoharu NAKATANI ◽  
Jun YAMASHITA ◽  
Tomomi SEKINE ◽  
Minoru TORIUMI ◽  
Toshiro ITANI

2021 ◽  
Author(s):  
Eri Yoshida

Abstract This paper describes that synthetic polymer vesicles undergo a human erythrocyte-like transformation in response to temperature changes. The normally biconcave discoid erythrocytes, i.e., the discocytes, are transformed into various shapes by their environmental stresses. Field emission scanning electron microscopy (FE-SEM) demonstrates that the spherical vesicles consisting of poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-methacrylic acid), PMAA-b-P(BMA-r-MAA), transform into echinocyte-like crenate vesicles due to expansion by the component copolymers in being freed from the vesicle surface when heated in an aqueous methanol solution. An increase in the vesicle concentration transforms the spherical vesicles into stomatocyte-like cup-shaped vesicles via the membrane perforation or double invaginations followed by membrane coupling and fusion. Light scattering studies reveal the reversibility and repeatability of the transformations. These findings indicate that the erythrocyte transformations are attributed to the inherent property of the bilayer membrane. The polymer vesicles are helpful for a better understanding of the biomembrane.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tina Šmigovec Ljubič ◽  
David Pahovnik ◽  
Majda Žigon ◽  
Ema Žagar

The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length andt-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy.


Polymer ◽  
1994 ◽  
Vol 35 (8) ◽  
pp. 1779-1786 ◽  
Author(s):  
Haeng-Boo Kim ◽  
Yongcai Wang ◽  
Mitchell A. Winnik

Sign in / Sign up

Export Citation Format

Share Document