Synthesis, structure and film-forming properties of poly(butyl methacrylate)-poly(methacrylic acid) core-shell latex

Polymer ◽  
1994 ◽  
Vol 35 (8) ◽  
pp. 1779-1786 ◽  
Author(s):  
Haeng-Boo Kim ◽  
Yongcai Wang ◽  
Mitchell A. Winnik
2013 ◽  
Vol 469 ◽  
pp. 3-6 ◽  
Author(s):  
Mu Li ◽  
Xiao Song Lin ◽  
Xiao Yu Li ◽  
Hai Qiao Wang

As the binder of waterborne inks, the capability of acrylic polymer has great influences on the quality of inks. In this contribution, structured latex particles with a poly (stryrene-butyl acrylate-methacrylate) core and a poly (butyl acrylate-methyl methacrylate-methacrylic acid-diacetone acrylamide (DAAM)) shell, which can be used as binders of water-based ink, were prepared by emulsion polymerization. The emulsion can cure in the course of film forming at ambient temperature through the reaction between DAAM and the adipic acid dihydrazide (ADH). Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM) were used to characterize the structures and study the properties of the latices. The drying time of the crosslinking latices was investigated. In addition, influences of DAAM monomer dosage and the mole ratio of DAAM to ADH on the mechanical properties of self-crosslinkable core-shell latices were also discussed. It was found that the core-shell crosslinkable particles with a low glass transition temperature (Tg) core and a high Tg shell have better film properties and would be more applicable to binders of water-based ink for plastic film, in comparison with those particles with a high Tg core and a low Tg shell.


2003 ◽  
Vol 19 (5) ◽  
pp. 775-777
Author(s):  
Kiyoharu NAKATANI ◽  
Jun YAMASHITA ◽  
Tomomi SEKINE ◽  
Minoru TORIUMI ◽  
Toshiro ITANI

2014 ◽  
Vol 1033-1034 ◽  
pp. 996-1001
Author(s):  
Shao Jin Jia ◽  
Zhen Qi Zhang ◽  
Zhen Gang Ding ◽  
Xiao Tian Hou ◽  
Ping Kai Jiang

A core-shell composite polymer was produced by the method of high internal phase emulsion polymerization. The continuous phase of emulsion contained styrene(St), butyl methacrylate(BMA), octamethylcylotetrasiloxane(D4), and azobisisobutyronitrile (AIBN) which worked as an initiator. The block copolymers with St, BMA, D4 units are particularly promising for surface modification and hydrophobicity. The core-shell structure is proved by the use of Transmission electron microscopy (TEM). In addition, the water contact angle increased with the increasing weight ratio of D4. The results show that the concentrated emulsion system has good stability and the water resistance of the polymer has been improved greatly.


2021 ◽  
Author(s):  
Eri Yoshida

Abstract This paper describes that synthetic polymer vesicles undergo a human erythrocyte-like transformation in response to temperature changes. The normally biconcave discoid erythrocytes, i.e., the discocytes, are transformed into various shapes by their environmental stresses. Field emission scanning electron microscopy (FE-SEM) demonstrates that the spherical vesicles consisting of poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-methacrylic acid), PMAA-b-P(BMA-r-MAA), transform into echinocyte-like crenate vesicles due to expansion by the component copolymers in being freed from the vesicle surface when heated in an aqueous methanol solution. An increase in the vesicle concentration transforms the spherical vesicles into stomatocyte-like cup-shaped vesicles via the membrane perforation or double invaginations followed by membrane coupling and fusion. Light scattering studies reveal the reversibility and repeatability of the transformations. These findings indicate that the erythrocyte transformations are attributed to the inherent property of the bilayer membrane. The polymer vesicles are helpful for a better understanding of the biomembrane.


2021 ◽  
Author(s):  
James Turton ◽  
Stephen Worrall ◽  
Muhamad S. Musa ◽  
Amir H. Milani ◽  
Yichao Yao ◽  
...  

The mechanical properties of these highly stretchable, water deposited elastomers can be tuned by varying MAA content and vinyl functionalisation.


2005 ◽  
Vol 13 (7) ◽  
pp. 721-726
Author(s):  
Shunsheng Cao ◽  
Xiaobo Deng ◽  
Bailing Liu

Core-shell microspheres ranging in average diameter from 12.829 to 15.039 μm, with a poly butyl methacrylate (BMA) core, and a poly 3-(methacryloxypropyl)-trimethoxysilane (MATS) shell, were prepared with methanol as the dispersion medium, by a successive seeding method under kinetically controlled conditions. To date, although some of particles (PSi/PA) have been prepared by seeded emulsion polymerisation, only a few core/shell (PA/PSi) microspheres have been reported the literatures. To prepare core/shell (PA/PSi), the core was first synthesized by dispersion polymerisation and to form seeds; addition of MATS monomer was started after 90~95% conversion of the BMA. The reaction was prolonged for another 12 h to achieve complete consumption of MATS monomer. Microspheres; containing hydrophilic PBMA as the core and hydrophobic PMATS as the shell, were successfully formed through the free radical of surface in the core. The particles morphology and size distribution were examined using a Transmission electron microscope and a Malvern Master Sizer/E particle size analyser, respectively.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56323-56331 ◽  
Author(s):  
Xiaorui Li ◽  
Pengcheng Du ◽  
Peng Liu

The structure of core–shell nanogels@polyelectrolyte complex microspheres was optimized as a drug delivery system for controlled release.


Sign in / Sign up

Export Citation Format

Share Document