scholarly journals Evaluation of a portable chlorophyll optical meter to estimate chlorophyll concentration in the green seaweed Ulva ohnoi

2020 ◽  
Vol 32 (6) ◽  
pp. 4171-4174
Author(s):  
Ingrid Masaló ◽  
Joan Oca
2019 ◽  
Vol 41 ◽  
pp. 101555 ◽  
Author(s):  
Marie Magnusson ◽  
Christopher R.K. Glasson ◽  
Matthew J. Vucko ◽  
Alex Angell ◽  
Tze Loon Neoh ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1684
Author(s):  
Francisca P. Martínez-Antequera ◽  
Juan A. Martos-Sitcha ◽  
Jose M. Reyna ◽  
Francisco J. Moyano

This study evaluated the use of Ulva ohnoi as an ingredient in feeds for aquaculture in three different experiments. Experiment 1 was oriented to confirm the negative effect of U. ohnoi on fish digestion. Experiment 2 assessed the effect on growth, feed efficiency, and immune status of juvenile sea bass (Dicentrarchus labrax) fed on diets including U. ohnoi, previously treated or not with carbohydrases used to partially hydrolyze indigestible polysaccharides. Experiment 3 was aimed to evaluate the potential protective effect of U. ohnoi on the oxidative status of sea bream (Sparus aurata) challenged by the consumption of a feed formulated with the oil fraction completely oxidized. Results show a negligible effect of U. ohnoi meal on protein digestion when included in feeds at levels of 10% or less. Moreover, results of growth and feed use evidenced the possibility of using up to 5% inclusion of algal meal in feeds without adverse effects on the zootechnical parameters, while the enzyme pretreatment was ineffective to improve its nutritional use. Finally, the inclusion of U. onhoi in feeds determined both an immunostimulatory effect, evidenced by an increase in skin mucus lysozyme in the two mentioned fish species, and a positive influence on the oxidative metabolism of seabream when fed on a diet including rancid oil.


2016 ◽  
Vol 29 (2) ◽  
pp. 1011-1026 ◽  
Author(s):  
Alex R. Angell ◽  
Nicholas A. Paul ◽  
Rocky de Nys
Keyword(s):  

2021 ◽  
Vol 13 (5) ◽  
pp. 2477
Author(s):  
Kleopatra-Eleni Nikolaou ◽  
Theocharis Chatzistathis ◽  
Serafeim Theocharis ◽  
Anagnostis Argiriou ◽  
Stefanos Koundouras ◽  
...  

Under the current and future climate crisis, a significant rise in soil salinity will likely affect vine productivity in several Mediterranean regions. During the present research, the rootstock effects on salinity tolerance of Merlot and Cabernet Franc grapevine cultivars were studied. In a pot hydroponic culture, own-rooted Merlot and Cabernet Franc grapevine cultivars or grafted onto the rootstocks 1103 P and 101-14 Mgt were drip-irrigated with saline water. A completely randomized 3 × 2 × 2 factorial experiment was designed with two vine rootstocks or own-rooted vines, two scion cultivars, and 100 mM NaCl salinity or control treatments, with six replications. A significant effect of scion cultivar, rootstock, and salinity was observed for most of the measured parameters. At the end of salinity stress period, leaf, shoot, root, and trunk nutrient concentrations were measured. Salinity stress increased Chloride (Cl−) and Sodium (Na+) concentrations in all parts of the vines and decreased leaf concentrations of Potassium (K+), Calcium (Ca+2), Magnesium (Mg+2), Nitrogen (N), and Iron (Fe). In contrast, salinity stress increased leaf Boron (B) concentrations, whereas that of Manganese (Mn) remained unaffected. Leaf chlorophyll concentration decreased from 42% to 40% after thirty and sixty days of salt treatment, respectively. A similar trend was observed for the CCM-200 relative chlorophyll content. Salinity significantly decreased steam water potential (Ws), net CO2 assimilation rate (A), and stomatal conductance(gs) in all cases of grafted or own-rooted vines. Sixty days after the beginning of salt treatment, total Phenolics and PSII maximum quantum yield (Fv/Fm) decreased significantly. The rootstock 1103 P seems to be a better excluder for Na+ and Cl− and more tolerant to salinity compared to 101-14 Mgt rootstock.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. K. Sarangi

An oceanic eddy of size about 150 kilometer diameter observed in the northeastern Arabian Sea using remote sensing satellite sensors; IRS-P4 OCM, NOAA-AVHRR and NASA Quickscat Scatterometer data. The eddy was detected in the 2nd week of February in Indian Remote Sensing satellite (IRS-P4) Ocean Color Monitor (OCM) sensor retrieved chlorophyll image on 10th February 2002, between latitude 16°90′–18°50′N and longitude 66°05′–67°60′E. The chlorophyll concentration was higher in the central part of eddy (~1.5 mg/m3) than the peripheral water (~0.8 mg/m3). The eddy lasted till 10th March 2002. NOAA-AVHRR sea surface temperature (SST) images generated during 15th February-15th March 2002. The SST in the eddy’s center (~23°C) was lesser than the surrounding water (~24.5°C). The eddy was of cold core type with the warmer water in periphery. Quickscat Scatterometer retrieved wind speed was 8–10 m/sec. The eddy movement observed southeast to southwest direction and might helped in churning. The eddy seemed evident due to convective processes in water column. The processes like detrainment and entrainment play role in bringing up the cooler water and the bottom nutrient to surface and hence the algal blooming. This type of cold core/anti-cyclonic eddy is likely to occur during late winter/spring as a result of the prevailing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document