Magnetic properties of SUS 304 austenitic stainless steel after tensile deformation at elevated temperatures

2005 ◽  
Vol 40 (9-10) ◽  
pp. 2709-2711 ◽  
Author(s):  
Lefu Zhang ◽  
Seiki Takahashi ◽  
Yasuhiro Kamada ◽  
Hiroaki Kikuchi ◽  
Katsuyuki Ara ◽  
...  
2015 ◽  
Vol 18 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Ramaiany Carneiro Mesquita ◽  
José Manoel Rivas Mecury ◽  
Auro Atsumi Tanaka ◽  
Regina Célia de Sousa

2010 ◽  
Vol 638-642 ◽  
pp. 2992-2997 ◽  
Author(s):  
Hidefumi Date

The martensite induced in three types of austenitic stainless steel, which indicate the different stability of the austenitic phase (γ), were estimated by the resistivity measured during the tensile deformation or compressive deformation at the temperatures 77, 187 and 293 K. The resistivity curves were strongly dependent on the deformation mode. The volume fraction of the martensite (α’) was also affected by the deformation mode. The ε phase, which is the precursor of the martensite and is induced from the commencement of the deformation, decreased the resistivity. However, lots of defects generated by the deformation-induced martensite increased the resistivity. The experimental facts and the results shown by the modified parallelepiped model suggested a complicated transformation process depending on each deformation mode. The results shown by the model also suggested a linear relation between the resistivity and the martensite volume at the region of the martensite formation. The fact denoted that the resistivity is mostly not controlled by the austenite, ε phase and martensite, but by the defects induced due to the deformation-induced martensite.


Sign in / Sign up

Export Citation Format

Share Document