scholarly journals Anomalous electrical conductivity and percolation in carbon nanotube composites

2008 ◽  
Vol 43 (17) ◽  
pp. 6012-6015 ◽  
Author(s):  
Chunsheng Lu ◽  
Yiu-Wing Mai
Author(s):  
Reza Rizvi ◽  
Sara Makaremi ◽  
Steven Botelho ◽  
Elaine Biddiss ◽  
Hani Naguib

This study examines the piezoresistive behavior of polymer-conducting filler composites. Piezoresistive composites of Poly(dimethyl-siloxane)-Multiwall Carbon Nanotube (PDMS-MWNT) were prepared using a direct mixing approach. The dispersion and the electrical conductivity of the composites were characterized at various MWNT compositions. The piezoresistive behavior under compression was measured using an Instron Universal Tester/Digital Sourcemeter combination. Negative piezoresistive behavior was observed signifying a reducing mean inter-particulate distance in the composites. Moreover, the sensitivities increased at two compositional values of 3 and 5 wt% MWNT in PDMS, which was associated with the state of MWNT dispersion observed. Tensile piezoresistive behavior of the PDMS-MWNT adhered on a fabric substrate was also characterized. Positive piezoresistive values, indicating increasing inter-particulate distance, were observed. Significant challenges in the implementation of PDMS-MWNT as sensory materials in electronic-textile applications were observed as a result of this study and have been discussed.


2018 ◽  
Vol 8 ◽  
pp. 184798041877647 ◽  
Author(s):  
Sung-Hwan Jang ◽  
Yong-Lae Park

Carbon nanotube-reinforced polymer composites were fabricated by high shear mixing. The microstructure and the electrical properties of the carbon nanotube–polymer composites were investigated by scanning electron microscopy and electrical resistance measurement. We found that the carbon nanotube composites showed high electrical conductivity (1.5 S m−1) at 7.0 wt% of carbon nanotubes, and the increase in thickness enhanced the electrical conductivity of the composites. The multifunctional properties of the carbon nanotube composites were also investigated for use in sensing the freezing temperature and also in deicing by self-heating. The results showed that the carbon nanotube–polymer composites had high temperature sensitivity in the freezing temperature range from −5 to 5 C and an excellent heating performance due to the Joule heating effect. The carbon nanotube composites are promising to be used as smart coating materials for deicing by self-heating as well as by detection of the freezing temperature.


Sign in / Sign up

Export Citation Format

Share Document