scholarly journals Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol

2013 ◽  
Vol 48 (18) ◽  
pp. 6393-6403 ◽  
Author(s):  
R. Wallace ◽  
A. P. Brown ◽  
R. Brydson ◽  
K. Wegner ◽  
S. J. Milne
2015 ◽  
Vol 1131 ◽  
pp. 146-152 ◽  
Author(s):  
Chawarat Siriwong ◽  
Jintaporn Yimchoy ◽  
Sangtian Nabsanit ◽  
Anurat Wisitsoraat ◽  
Sukon Phanichphant

Pure ZnO and Palladium (Pd)-loaded ZnO nanoparticles containing 0.25, 0.50, 0.75 and 1.0 mol% of Pd were successfully synthesized by flame spray pyrolysis (FSP) and characterized for hydrogen and ethanol sensing applications. The crystalline phase, morphology and size of these nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) in order to correlate physical properties with gas sensing performance. The sensing films were fabricated by coating nanoparticles with organic paste composed of terpineol and ethyl cellulose as a vehicle binder on Al2O3 substrate interdigitated with gold electrodes. The film thicknesses were varied by controlling the numbers of coating. Film morphologies of gas sensors were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Moreover, response time and sensitivity of these sensors towards hydrogen and ethanol were evaluated under operating temperatures ranging from 200 ̶ 350°C in dry air. Finally, The optimum amount of loading Pd and film thickness were investigated.


2014 ◽  
Vol 14 (10) ◽  
pp. 7860-7864 ◽  
Author(s):  
N. Tamaekong ◽  
T. Samerjai ◽  
C. Liewhiran ◽  
A. Wisitsoraat ◽  
S. Phanichphant

2017 ◽  
Vol 5 (sp.is.1) ◽  
pp. 15-22 ◽  
Author(s):  
Metin Yurddaskal ◽  
Serdar Yıldırım ◽  
Tuncay Dikici ◽  
Melis Yurddaskal ◽  
Mustafa Erol ◽  
...  

2021 ◽  
pp. 111426
Author(s):  
Naphaphan Kunthakudee ◽  
Pongtanawat Khemthong ◽  
Chuleeporn Luadthong ◽  
Joongjai Panpranot ◽  
Okorn Mekasuwandumrong ◽  
...  

Langmuir ◽  
2021 ◽  
Author(s):  
Abhijit H. Phakatkar ◽  
Mahmoud Tamadoni Saray ◽  
Md Golam Rasul ◽  
Lioudmila V. Sorokina ◽  
Timothy G. Ritter ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 817
Author(s):  
Maria Solakidou ◽  
Yiannis Georgiou ◽  
Yiannis Deligiannakis

Noble metal-TiO2 nanohybrids, NM0-TiO2, (NM0 = Pt0, Pd0, Au0, Ag0) have been engineered by One-Nozzle Flame Spray Pyrolysis (ON-FSP) and Double-Nozzle Flame Spray Pyrolysis (DN-FSP), by controlling the method of noble metal deposition to the TiO2 matrix. A comparative screening of the two FSP methods was realized, using the NM0-TiO2 photocatalysts for H2 production from H2O/methanol. The results show that the DN-FSP process allows engineering of more efficient NM0-TiO2 nanophotocatalysts. This is attributed to the better surface-dispersion and narrower size-distribution of the noble metal onto the TiO2 matrix. In addition, DN-FSP process promoted the formation of intraband states in NM0-TiO2, lowering the band-gap of the nanophotocatalysts. Thus, the present study demonstrates that DN-FSP process is a highly efficient technology for fine engineering of photocatalysts, which adds up to the inherent scalability of Flame Spray Pyrolysis towards industrial-scale production of nanophotocatalysts.


Sign in / Sign up

Export Citation Format

Share Document