tio2 matrix
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2519
Author(s):  
Valentin G. Bessergenev ◽  
José F. Mariano ◽  
Maria Conceição Mateus ◽  
João P. Lourenço ◽  
Adwaa Ahmed ◽  
...  

Dielectric properties and spectral dependence of the photocatalytic constant of Co doped P25 Degussa powder were studied. Doping of TiO2 matrix with cobalt was achieved by precipitation method using of Tris(diethylditiocarbamate)Co(III) precursor (CoDtc–Co[(C2H5)2NCS2]3). Five different Co contents with nominal Co/Ti atomic ratios of 0.005, 0.01, 0.02, 0.05 and 0.10 were chosen. Along with TiO2:Co samples, a few samples of nanopowders prepared by Sol-Gel method were also studied. As it follows from XPS and NMR studies, there is a concentration limit (TiO2:0.1Co) where cobalt atoms can be uniformly distributed across the TiO2 matrix before metallic clusters start to form. It was also shown that CoTiO3 phases are formed during annealing at high temperatures. From the temperature dependence of the dielectric constant it can be concluded that the relaxation processes still take place even at temperatures below 400 °C and that oxygen defect Ti–O octahedron reorientation take place at higher temperatures. The spectral dependency of the photocatalytic constant reveals the presence of some electronic states inside the energy gap of TiO2 for all nanopowdered samples.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 817
Author(s):  
Maria Solakidou ◽  
Yiannis Georgiou ◽  
Yiannis Deligiannakis

Noble metal-TiO2 nanohybrids, NM0-TiO2, (NM0 = Pt0, Pd0, Au0, Ag0) have been engineered by One-Nozzle Flame Spray Pyrolysis (ON-FSP) and Double-Nozzle Flame Spray Pyrolysis (DN-FSP), by controlling the method of noble metal deposition to the TiO2 matrix. A comparative screening of the two FSP methods was realized, using the NM0-TiO2 photocatalysts for H2 production from H2O/methanol. The results show that the DN-FSP process allows engineering of more efficient NM0-TiO2 nanophotocatalysts. This is attributed to the better surface-dispersion and narrower size-distribution of the noble metal onto the TiO2 matrix. In addition, DN-FSP process promoted the formation of intraband states in NM0-TiO2, lowering the band-gap of the nanophotocatalysts. Thus, the present study demonstrates that DN-FSP process is a highly efficient technology for fine engineering of photocatalysts, which adds up to the inherent scalability of Flame Spray Pyrolysis towards industrial-scale production of nanophotocatalysts.


2021 ◽  
Vol 556 ◽  
pp. 125992
Author(s):  
Adil Bouhadiche ◽  
Soulef Benghorieb ◽  
Tahar Touam ◽  
Djelloul Mendil ◽  
Azeddine Chelouche

2020 ◽  
Vol 11 (4) ◽  
pp. 492-507
Author(s):  
M. E. Bondarenko ◽  
◽  
P. M. Silenko ◽  
Yu. M. Solonin ◽  
A. V. Ragulya ◽  
...  

The use of oxygen modified graphite-like carbon nitride (C3N4Ox), photosensitive in the visible region of the optical spectrum, along with TiO2, photocatalytically active only in the ultraviolet region of the spectrum, in the C3N4Ox/TiO2 binary photocatalyst, opens a possibility of the use of sunlight energy. To increase opportunities of various kinds of photochemistry-related applications of C3N4Ox/TiO2 photocatalyst, the phase composition of the TiO2 matrix and morphology of nanoparticles of composite and their optical properties are very important. A novel composite material, C3N4Ox/TiO2, was synthesized in the present work in accordance with the approach developed in Frantsevich Institute for Problems of Materials Science of NASU for the synthesis of powdered oxygen-doped carbon nitride (C3N4Ox) by CVD method under the special reactionary conditions of the melamine pyrolysis, in particular, in the presence of a fixed air volume. Deposition of C3N4Ox carried out on the surface of a nanostructured powdered TiO2 matrix of different phase composition, rutile or anatase. The deposition of C3N4Ox (~5 % O) on both rutile and anatase nanopowders was confirmed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS) methods. SEM micrographs (recorded with a MIRA3 TESCAN scanning electron microscope) of nanoparticles of both C3N4Ox/TiO2 composites (anatase and rutile phases) demonstrate the arrangement of TiO2 as separate globular nanoparticles and clusters between the plates and in the channels of the porous scaly plates C3N4Ox. However, the anatase phase nanoparticles (synthesized in IPM NASU) have a higher dispersion, the average size of non-aggregated almost monodisperse particles is about 10 nm. Using UV/Vis spectroscopy, it has been found that a redshift of long-wavelength edge of the fundamental absorption band of the spectra is observed when going from TiO2 (anatase), TiO2 (rutile), C3N4, C3N4Ox/TiO2 (anatase), C3N4Ox/TiO2 (rutile) and, then, to C3N4Ox, and the band gap decreases from 3.2, 3.0, 2.6, 2.4, 2.25 to 2.1 eV in the above sequence of materials. In such a case, C3N4Ox/TiO2 (especially deposited on anatase phase) would absorb more visible light than g-C3N4 and TiO2, by generating more charges which favor the improvement in the photoactivity of the catalysts.


2020 ◽  
Vol 32 (7) ◽  
pp. 075403
Author(s):  
Weilong Qiu ◽  
Jing Li ◽  
Yongguang Zhang ◽  
Gulnur Kalimuldina ◽  
Zhumabay Bakenov

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 227
Author(s):  
Marco S. Rodrigues ◽  
Diana I. Meira ◽  
Cláudia Lopes ◽  
Joel Borges ◽  
Filipe Vaz

In this work, plasmonic thin films composed of Au nanoparticles embedded in a TiO2 matrix were prepared in a transparent polymer substrate of poly(dimethylsiloxane) (PDMS). The thin films were deposited by reactive DC magnetron sputtering, and then subjected to heat treatment up to 150 °C in order to promote the growth of the Au nanoparticles throughout the TiO2 matrix. The transmittance spectrum of the thin films was monitored in situ during the heat treatment, and the minimum time required to have a defined localized surface plasmon resonance (LSPR) band was about 10 min. The average size of Au nanoparticles was estimated to be about 21 nm—the majority of them are sized in the range 10–40 nm, but also extend to larger sizes, with irregular shapes. The refractive index sensitivity of the films was estimated by using two test fluids (H2O and DMSO), and the average value reached in the assays was 37.3 ± 1.5 nm/RIU, resulting from an average shift of 5.4 ± 0.2 nm. The results show that it is possible to produce sensitive plasmonic Au-TiO2 thin films in transparent polymer substrates such as PDMS, the base material to develop microfluidic channels to be incorporated in LSPR sensing systems.


Sign in / Sign up

Export Citation Format

Share Document