Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg–Y–Nd alloy

2016 ◽  
Vol 51 (16) ◽  
pp. 7571-7584 ◽  
Author(s):  
Genghua Cao ◽  
Datong Zhang ◽  
Xicai Luo ◽  
Weiwen Zhang ◽  
Wen Zhang
2021 ◽  
Vol 875 ◽  
pp. 203-210
Author(s):  
Talha Ahmed ◽  
Wali Muhammad ◽  
Zaheer Mushtaq ◽  
Mustasim Billah Bhatty ◽  
Hamid Zaigham

In this study, mechanical properties of friction stir welded Aluminum Alloy (AA) 6061 in three different heat treatment conditions i.e. Annealed (O), Artificially aged (T6) and Post Weld Heat Treated (PWHT) were compared. Plates were welded in a butt joint form. Parameters were optimized and joints were fabricated using tool rotational speed and travel speed of 500 rpm and 350 mm/min respectively. Two sets of plates were welded in O condition and out of which one was, later, subjected to post weld artificial aging treatment. Third set was welded in T6 condition. The welds were characterized by macro and microstructure analysis, microhardness measurement and mechanical testing. SEM fractography of the tensile fracture surfaces was also performed. Comparatively better mechanical properties were achieved in the plate with PWHT condition.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1256
Author(s):  
Di Tie ◽  
Yi Jiang ◽  
Renguo Guan ◽  
Minfang Chen ◽  
Jufu Jiang ◽  
...  

AZ91 alloy is a widely applied commercial magnesium alloy due to its good castability, balanced mechanical properties and acceptable price, and lanthanum alloying has been proven to be one of the most effective methods to further improve its mechanical properties. Therefore, we reveal the evolution of microstructure, mechanical properties and fracture behavior with increasing lanthanum content in AZ91 alloy in this study. The magnesium matrix was significantly refined by lanthanum content, and this effect became more evident with increasing addition of lanthanum. The presence of Al3La precipitates significantly reduced the grain mobility and suppressed the formation of Mg17Al12 discontinuous precipitates along the grain boundaries. The rheo-cast alloys exhibited improved and balanced tensile strength and ductility after aging treatment. The fracture type of AZ91-La alloys could be classified as ductile fracture due to the presence of less quasi-cleavage planes and more dimples with a mixture of tear ridges and micropores. Due to the fully refined microstructure and the balanced mechanical properties, the AZ91–1.0La (mass%) alloy presented the greatest potential for industrial applications among the three studied AZ91-La alloys.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Daofen Xu ◽  
Changjun Zhu ◽  
Chengfu Xu ◽  
Kanghua Chen

The Fe-rich intermetallic phases have a broadly detrimental effect on the mechanical properties of Al–Cu alloy. In this paper, the continuous evolution of Fe-rich intermetallics and their effects on mechanical properties, especially the tensile fracture behavior of 2219 wrought Al–Cu alloys as a function of Fe content against different processing approaches (i.e., as-cast, homogenization, multidirectional forging, and solution-peak aging treatment) were investigated using optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that needle-like Al7Cu2Fe or Al7Cu2(Fe, Mn) intermetallics mainly presented in the final microstructures of all alloys with various Fe contents. The size and number of Al7Cu2Fe/Al7Cu2(Fe, Mn) intermetallics increased with the increase of Fe content. The increase of Fe content had little influence on the ultimate tensile strength and yield strength, while obvious deterioration in the elongation, because fracture initiators mainly occurred at the Al7Cu2Fe/Al7Cu2(Fe, Mn) particles or particles–matrix interface. Therefore, the 2219 Al–Cu alloy with 0.2 wt.% Fe content presented relatively low tensile ductility. The tensile fracture mechanism has been discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document