Grain growth mechanisms in ultrafine-grained steel: an electron backscatter diffraction and in situ TEM study

2019 ◽  
Vol 54 (14) ◽  
pp. 10489-10505 ◽  
Author(s):  
Laura Ahmels ◽  
Ankush Kashiwar ◽  
Torsten Scherer ◽  
Christian Kübel ◽  
Enrico Bruder
2004 ◽  
Vol 467-470 ◽  
pp. 935-940 ◽  
Author(s):  
Sandra Piazolo ◽  
Vera G. Sursaeva ◽  
David J. Prior

First results from grain growth experiments in a columnar structured Al foil show several interesting features: (a) the grain size distribution remains heterogeneous even after up to 300 min. annealing and (b) the Von Neumann-Mullins relation is not always satisfied. To clarify the underlying reasons for these features, in-situ heating experiments within a Scanning Electron Microscope (SEM) were combined with detailed Electron Backscatter Diffraction (EBSD) analysis. These show that the movement of boundaries can be strongly heterogeneous. For example, the complete replacement of one grain by a neighbouring grain without significant change of the surrounding grain boundary topology is frequently seen. Experiments show that grain boundary energy and/or mobility are anisotropic both with respect to misorientation and orientation of grain boundary plane. Low energy and/or mobility boundaries are commonly low angle boundaries, twin boundaries and boundaries that form traces to a low index plane of at least one of the adjacent grains. As a consequence the Von Neumann-Mullins relation is not always satisfied.


Microscopy ◽  
2020 ◽  
Author(s):  
Kaneaki Tsuzazki ◽  
Motomichi Koyama ◽  
Ryosuke Sasaki ◽  
Keiichiro Nakafuji ◽  
Kazushi Oie ◽  
...  

Abstract Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.


2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
D Prior ◽  
M Bestmann ◽  
S Piazolo ◽  
NC Seaton ◽  
DJ Tatham ◽  
...  

2016 ◽  
Vol 725 ◽  
pp. 249-254 ◽  
Author(s):  
Yoshiteru Aoyagi

In this study, using experiment results obtained by electron backscatter diffraction, information on crystal orientation is introduced into a computational model for crystal plasticity simulation considering the effects of grain boundaries and dislocation sources to express the effect of the microstructure of ultrafine-grained metals. Finite-element simulations are performed for a polycrystal of an aluminum plate under biaxial tension. The multiscale crystal plasticity simulations depict the yield surface of the ultrafine-grained aluminum produced by accumulative roll-bonding processes. The anisotropic material coefficients of a higher-ordered yield function for ultrafine-grained aluminum are derived using a genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document