Effect of dispersibility of silver powders in conductive paste on microstructure of screen-printed front contacts and electrical performance of crystalline silicon solar cells

2010 ◽  
Vol 22 (5) ◽  
pp. 527-530 ◽  
Author(s):  
Guiquan Guo ◽  
Weiping Gan ◽  
Feng Xiang ◽  
Jinling Zhang ◽  
Hua Zhou ◽  
...  
2016 ◽  
Vol 33 (3) ◽  
pp. 172-175 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Jaroslaw Domaradzki ◽  
Grazyna Kulesza-Matlak ◽  
Marek Lipinski ◽  
Danuta Kaczmarek

Purpose The purpose of this paper was investigation and comparison of electrical and optical properties of crystalline silicon solar cells with ITO or TiO2 coating. The ITO, similar to TiO2, is very well transparent in the visible part of optical radiation; however, its low resistivity (lower that 10-3 Ohm/cm) makes it possible to use simultaneously as a transparent electrode for collection of photo-generated electrical charge carriers. This might also invoke increasing the distance between screen-printed metal fingers at the front of the solar cell that would increase of the cell’s active area. Performed optical investigation showed that applied ITO thin film fulfill standard requirements according to antireflection properties when it was deposited on the surface of silicon solar cell. Design/methodology/approach Two sets of samples were prepared for comparison. In the first one, the ITO thin film was deposited directly on the crystalline silicon substrate with highly doped emitter region. In the second case, the TCO film was deposited on the same type of silicon substrate but with additional ultrathin SiO2 passivation. The fingers lines of 80 μm width were then screen-printed on the ITO layer with two different spaces between fingers for each set. The influence of application of the ITO electrode and the type of metal electrodes patterns on the electrical performance of the prepared solar cells was investigated through optical and electrical measurements. Findings The electrical parameters such as short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and conversion efficiency were determined on a basis of I-V characteristics. Short-circuit current density (Jsc) was equal to 32 mA/cm2 for a solar cell with a typical antireflection layer and 31.5 mA/cm2 for the cell with ITO layer, respectively. Additionally, electroluminescence of prepared cells was measured and analysed. Originality/value The influence of the properties of ITO electrode on the electrical performance of crystalline silicon solar cells was investigated through complex optical, electrical and electroluminescence measurements.


2011 ◽  
Vol 71-78 ◽  
pp. 778-781 ◽  
Author(s):  
Tao Li ◽  
Chun Lan Zhou ◽  
Zhen Gang Liu ◽  
Wen Jing Wang ◽  
Yang Song ◽  
...  

In this paper, the improvement on electrical properties of screen-printed crystalline silicon solar cells by light-induced electroplating of silver is studied. Optical losses are analysed by the introduction of scale factor in the calculation. Electrical losses are mainly from the seed layer electrodes, top layer electrodes, the emitter, the base and the contact resistance between silicon and silver. Light-induced electroplating of silver is able to reduce the total power losses of screen-printed solar cells obviously by denser silver electrode. In experiment, the relative increments of I-V parameters as a function of electroplating time for crystalline silicon solar cells with 60μm, 75μm and 90μm wide seed layer electrodes are measured. After light-induced electroplating process, the cells efficiencies of 16.8%, 17.2% and 17.8% have reached on 60μm, 75μm and 90μm wide gridlines screen-printed solar cells, respectively. The calculated results and experimental data show good agreement. Due to the successful verification by comparing between numerical simulation and experimental data, the simulation results could be used to optimize the two-layer electrode structure and light-induced electroplating process.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24384-24388 ◽  
Author(s):  
Shiliang Wu ◽  
Wei Wang ◽  
Li Li ◽  
Dong Yu ◽  
Lei Huang ◽  
...  

The mechanism of a Ag/SiNx firing-through process in the manufacture of crystalline silicon solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian N. Kruse ◽  
Sören Schäfer ◽  
Felix Haase ◽  
Verena Mertens ◽  
Henning Schulte-Huxel ◽  
...  

AbstractWe present a simulation-based study for identifying promising cell structures, which integrate poly-Si on oxide junctions into industrial crystalline silicon solar cells. The simulations use best-case measured input parameters to determine efficiency potentials. We also discuss the main challenges of industrially processing these structures. We find that structures based on p-type wafers in which the phosphorus diffusion is replaced by an n-type poly-Si on oxide junction (POLO) in combination with the conventional screen-printed and fired Al contacts show a high efficiency potential. The efficiency gains in comparsion to the 23.7% efficiency simulated for the PERC reference case are 1.0% for the POLO BJ (back junction) structure and 1.8% for the POLO IBC (interdigitated back contact) structure. The POLO BJ and the POLO IBC cells can be processed with lean process flows, which are built on major steps of the PERC process such as the screen-printed Al contacts and the $$\text{Al}_\text{2 }\text{O}_\text{3 }/\text{SiN }$$ Al 2 O 3 / SiN passivation. Cell concepts with contacts using poly-Si for both polarities ($$\text{POLO}^2$$ POLO 2 -concepts) show an even higher efficiency gain potential of 1.3% for a $$\text{POLO}^2$$ POLO 2 BJ cell and 2.2% for a $$\text{POLO}^2$$ POLO 2 IBC cell in comparison to PERC. For these structures further research on poly-Si structuring and screen-printing on p-type poly-Si is necessary.


Sign in / Sign up

Export Citation Format

Share Document