Stepwise tuning of the doping and thickness of a-Si:H(p) emitter layer to improve the performance of c-Si(n)/a-Si:H(p) heterojunction solar cells

Author(s):  
Venkanna Kanneboina ◽  
Ramakrishna Madaka ◽  
Pratima Agarwal
2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


2015 ◽  
Vol 18 (3) ◽  
pp. 55-60
Author(s):  
Phuong Hoai Pham ◽  
Trung Quang Tran ◽  
Khoa Dang Pham

The optimisation of electrical and optical properties of doped amorphous silicon layers (the emitter layer) is the key importance to obtain high efficiency heterojunction (HJ) solar cells. Desired properties for the emitter layer include wide bandgap, low surface and interface recombination, and good doping efficiency. In this study, we report the thinfilm properties of n-doped nc-Si:H emitter layers deposited using RF (13.56 MHz) PECVD, at different SiH4/H2 gas flow ratios, at the same RF power, pressures, and temperatures. Trends relating deposition conditions to relevant film characteristics such as thickness, wide bandgap, crystalline fraction and conductivity are discussed. Finally, the heterojunction solar cells using the optimised parameters for n-doped nc- Si:H layers are fabricated with high short circuit current (17 mA).


2016 ◽  
Vol 13 (10-12) ◽  
pp. 1006-1010 ◽  
Author(s):  
Francesca Menchini ◽  
Maria Luisa Grilli ◽  
Theodoros Dikonimos ◽  
Alberto Mittiga ◽  
Luca Serenelli ◽  
...  

2014 ◽  
Vol 116 (24) ◽  
pp. 244506 ◽  
Author(s):  
Youngseok Lee ◽  
Heewon Kim ◽  
S. M. Iftiquar ◽  
Sunbo Kim ◽  
Sangho Kim ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Youngseok Lee ◽  
Vinh Ai Dao ◽  
Sangho Kim ◽  
Sunbo Kim ◽  
Hyeongsik Park ◽  
...  

For optimum performance of the hydrogenated amorphous silicon/crystalline silicon (a-Si : H/c-Si) heterojunction solar cells, featuring a doping concentration, localized states, as well as thickness of emitter layer are crucial, since Fermi level, surface passivated quality, and light absorption have to be compromised themselves. For this purpose, the effect of both doping concentration and thickness of emitter layer was investigated. It was found that with gas phase doping concentration and emitter layer thickness of 3% and 7 nm, solar cell efficiency in excess of 14.6% can be achieved. For high gas phase doping concentration, the degradation of open-circuit voltage as well as cell efficiency was obtained due to the higher disorder in the emitter layer. The heavily doped along with thicker in thickness of emitter layer results in light absorption on short wavelength, then diminishing short-circuit current density.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Jaran Sritharathikhun ◽  
Taweewat Krajangsang ◽  
Apichan Moollakorn ◽  
Sorapong Inthisang ◽  
Amornrat Limmanee ◽  
...  

This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtained by increasing the CO2/SiH4ratio; however, the tradeoff betweenE04and dark conductivity must be considered. The CO2/SiH4ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4= 0), the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc) of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in theVocand the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.


Sign in / Sign up

Export Citation Format

Share Document