Synthesis of metallic surface plasmon-sensitized TiO2 nanowire for wettability application

Author(s):  
Kamal Kant Kashyap ◽  
Monalisa Hazarika ◽  
Sardul Singh Dhayal ◽  
Paulsamy Chinnamuthu
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Leeju Singh ◽  
Nicolò Maccaferri ◽  
Denis Garoli ◽  
Yuri Gorodetski

The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light–plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1357
Author(s):  
Guan-Ting Dong ◽  
Chun-Ta Wang ◽  
Yu-Ju Hung

Active tuning on a plasmonic structure is discussed in this report. We examined the transient transmission effects of an azo-dye-doped liquid crystal cell on a metallic surface grating. The transition between isotropic and nematic phases in liquid crystal generated micro-domains was shown to induce the dynamic scattering of light from a He-Ne laser, thereby allowing transmission through a non-transparent aluminum film overlaying a dielectric grating. Various grating pitches were tested in terms of transmission effects. The patterned gratings include stripe ones and circular forms. Our results indicate that surface plasmon polariton waves are involved in the transmission process. We also demonstrated how momentum diagrams of gratings and Surface Plasmon Polariton (SPP) modes combined with Mie scattering effects could explain the broadband coupling phenomenon. This noteworthy transition process could be applied to the development of spatially broadband surface plasmon polariton coupling devices.


2007 ◽  
Author(s):  
Guo-ting Zhang ◽  
Juan Liu ◽  
Chuan-fei Hu ◽  
Fang Sun ◽  
Xiao-xing Su

Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 459-465 ◽  
Author(s):  
Anton Rudenko ◽  
Cyril Mauclair ◽  
Florence Garrelie ◽  
Razvan Stoian ◽  
Jean-Philippe Colombier

AbstractUsing coupled electromagnetic and hydrodynamic calculations, we elucidate theoretically the topographic transition from a random metallic surface to a periodic sub-wavelength grating by ultrashort laser ablation. The origin of this transition lies in the successive selection of hybrid surface waves scattered by random nanoholes. Contrary to the common belief that surface plasmon polaritons play the dominant role in the process and define the grating periodicity, we show that both quasi-cylindrical and surface plasmon waves are involved, whereas the diversity in the resulting spacings λ/2–λ (λ is the laser wavelength) is the manifestation of a broad frequency overlap of these waves, controlled by their relative phase shifts with respect to the plasmonic counterparts. The topography evolution imposes the dominant contribution to the surface sub-wavelength pattern by selecting the appropriate wave character from plasmonic modes to evanescent cylindrical waves. With the radiation dose, the grating periodicity exhibits a pronounced blue shift due to reinforced dipole–dipole coupling between the nanoholes and surface curvatures in the laser-processed area. This allows the creation of regular patterns with tunable periodicity.


2019 ◽  
Vol 9 (22) ◽  
pp. 4850 ◽  
Author(s):  
Mahmoud H. Elshorbagy ◽  
Alexander Cuadrado ◽  
Javier Alda

This work reports on a computational analysis of how a modified perovskite cell can work as a refractometric sensor by generating surface plasmon resonances at its front surface. Metal-dielectric interfaces are necessary to excite plasmonic resonances. However, if the transparent conductor (ITO) is replaced by a uniform metal layer, the optical absorption at the active layer decreases significantly. This absorption enhances again when the front metallic surface is nanostructured, adding a periodic extruded array of high aspect-ratio dielectric pyramids. This relief excites surface plasmon resonances through a grating coupling mechanism with the metal surface. Our design allows a selective absorption in the active layer of the cell with a spectral response narrower than 1 nm. The photo-current generated by the cells becomes the signal of the sensor. The device employs an opto-electronic interrogation method, instead of the well-known spectral acquisition scheme. The sensitivity and figure of merit (FOM) parameters applicable to refractometric sensors were adapted to this new situation. The design has been customized to sense variations in the index of refraction of air between 1.0 and 1.1. The FOM reaches a maximum value of 1005 RIU − 1 , which is competitive when considering some other advantages, as the easiness of the acquisition signal procedure and the total cost of the sensing system. All the geometrical and material parameters included in our design were selected considering the applicable fabrication constrains.


2021 ◽  
pp. 1-1
Author(s):  
Jun Wang ◽  
Xiaoqing Yang ◽  
Piqiang Su ◽  
Zhendong Wang ◽  
Huajiang Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document