scholarly journals Evidence for Passive Chemical Camouflage in the Parasitic Mite Varroa destructor

2015 ◽  
Vol 41 (2) ◽  
pp. 178-186 ◽  
Author(s):  
Ricarda Kather ◽  
Falko P. Drijfhout ◽  
Sue Shemilt ◽  
Stephen J. Martin
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


2013 ◽  
Vol 57 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Elżbieta Łopieńska–Biernat ◽  
Małgorzata Dmitryjuk ◽  
Ewa Zaobidna ◽  
Zbigniew Lipiński ◽  
Krystyna Żółtowska

Abstract The aim of the present research was to determine the basic composition of the organic compounds present in extracts from Varroa destructor, a parasitic mite of the honeybee. The total protein content was 9.16 ± 0.82 mg/100 mg of body weight, lipid content was 9.81 ± 1.99 mg/100 mg, and carbohydrate content was 26.67 ± 4.52 mg/100 mg. The triacylglycerol content was 2.40 ± 0.86 mg/100 mg and the cholesterol content was 0.14 ± 0.02 mg/100 mg. Thin layer chromatography indicated that phospholipids comprised the major part of the lipid component; cephalins (78%), cerebrosides (16%), and lecithins (6%) were identified in the phospholipid pool. Glucose (23.6 ± 4.52 mg/100 mg) was the main carbohydrate, followed by glycogen (5.43 ± 1.23 mg/100 mg) and trehalose (0.35 ± 0.07 mg/100 mg). Enzyme-linked immunosorbent assays detected two major glycogen metabolism enzymes, glycogen phosphorylase and glycogen synthase. Among the enzymes metabolising disaccharides, maltase (24.7 ± 2.38 μmol/mg protein) and trehalase (14.81 ± 5.21 μmol/mg protein) presented the highest activity. Saccharose and lactose were hydrolysed to a minor extent. These are the first measurements of the basic composition of the mite body. Although these data are not exhaustive, they may serve as the basis for further research on the metabolism of V. destructor, particularly concerning lipid metabolism.


2011 ◽  
Vol 1 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Dieter Behrens ◽  
Qiang Huang ◽  
Cornelia Geßner ◽  
Peter Rosenkranz ◽  
Eva Frey ◽  
...  

2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Matthieu Guichard ◽  
Vincent Dietemann ◽  
Markus Neuditschko ◽  
Benjamin Dainat

Abstract Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.


2013 ◽  
Vol 62 (4) ◽  
pp. 499-510 ◽  
Author(s):  
Małgorzata Dmitryjuk ◽  
Krystyna Żółtowska ◽  
Regina Frączek ◽  
Zbigniew Lipiński

2017 ◽  
Vol 56 (3) ◽  
pp. 278-287 ◽  
Author(s):  
Marco Lodesani ◽  
Cecilia Costa ◽  
Simone Franceschetti ◽  
Patrizia Bergomi ◽  
Gianni Galaverna ◽  
...  

Author(s):  
Jacques J M van Alphen ◽  
BartJan Fernhout

We refute a recent claim that parallel evolution in four European populations of honeybees has resulted in a not previously reported behavioural defence mechanism of the bees against the parasitic mite Varroa destructor, i.e. the ability of uncapping/recapping to reduce mite reproductive success. There are no data to support this claim, while there is a more plausible alternative interpretation of the reduced mite reproduction, i.e. reduction of mites through Varroa Sensitive Hygiene. We provide evidence why the former mechanism cannot explain resistance against Varroa in honeybees and the latter is instrumental in reducing Varroa populations.


Author(s):  
Kirsten Traynor ◽  
Fanny Mondet ◽  
Jaochim de Miranda ◽  
Maeva Techer ◽  
Vienna Kowallik ◽  
...  

The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honeybee (Apis cerana), to the naïve European honeybee (A. mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honeybee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. Highly infested weak colonies, popularly dubbed “mite bombs”, facilitate mite dispersal and disease transmission to stronger and healthier colonies. Here, we review recent developments in the biology, pathology and management of varroa, and unearth old knowledge that was lost in the archives.


2018 ◽  
Author(s):  
Jing Lei ◽  
Qiushi Liu ◽  
Tatsuhiko Kadowaki

AbstractHoney bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we identified the sensilla-rich sensory organ on the foreleg tarsus. The organ contained four types of sensilla, which may respond to different stimuli based on their morphology. We found the forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors (GRs), as well as proteins involved in ciliary transport. We also found that T. mercedesae and Drosophila melanogaster IR25a and IR93a are functionally equivalent. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.


Sign in / Sign up

Export Citation Format

Share Document