Role of Viscosity and Temperature Factors in the Magnetophoresis of Dispersed Phase of Different Liquid Media

Author(s):  
A. V. Sandulyak ◽  
D. A. Sandulyak ◽  
M. N. Polismakova ◽  
A. A. Sandulyak ◽  
V. A. Ershova
Polymer ◽  
1997 ◽  
Vol 38 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Julie Y. Qian ◽  
Raymond A. Pearson ◽  
Victoria L. Dimonie ◽  
Olga L. Shaffer ◽  
Mohamed S. El-Aasser

Soft Matter ◽  
2021 ◽  
Author(s):  
Junsu Chae ◽  
Siyoung Choi ◽  
KyuHan Kim

A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid like property because of concentrated polyhedral droplets. Although many studies...


2020 ◽  
Vol 4 (3) ◽  
pp. 38
Author(s):  
Giuseppe Cinelli ◽  
Martina Cofelice ◽  
Francesco Venditti

This review traces the current knowledge on the effects of various factors and phenomena that occur at interface, and the role of dispersed phase on the physicochemical, sensorial and nutritional characteristics of veiled extra virgin olive oil (VVOO). Since 1994 there have been numerous articles in the literature regarding the peculiar characteristic of unfiltered olive oil, so-called veiled or cloud virgin olive oil. It is a colloidal system (emulsion–sol), where the continuous lipidic phase dispreads mini droplets of milling water, fragments of cells and biotic fraction obtained from oil processing. During storage, the dispersed phase collapses and determines the quality of the virgin olive oil (VOO). The observed phenomena lead to worsening the quality of the product by causing defects such as oxidation of phenols, triacylglycerols hydrolysis and off-flavor formation. The addition of bioactive compounds, such as vitamins, on product based on VVOO, must take into account the eventual synergistic effect of individual substances. The role of the interphase is crucial to the synergic activity of bioactive molecules in improving oxidative stability, sensorial and health characteristics of VVOO.


The physiology and morphology of iron- and manganese-depositing flagellates are investigated by means of cultural experiments, with special reference to Anthophysa vegetans Stein, Siderodendron manganiferum n.gen., n.sp., Siphomonas Fritschii n.gen., n.sp. and Bikosoeca ( Poteriodendron ) petiolata (Stein) n.comb. Anthophysa multiplies in various liquid media containing small amounts of organic substances, hay decoction being specially favourable. Still better results are achieved with soil-water cultures, which afford the only successful cultures of Siderodendron and Siphomonas , while Bikosoeca also grows well in hay infusions. Addition of Fe" and Mn" is essential. The brown colour of biological iron deposits is shown to be due to admixture of manganese compounds, while mere ferric precipitates are in microscopical amounts almost colourless. Anthophysa and Siderodendron deposit more manganese than iron, so that their stalks appear brown, while those of Siphomonas are generally light brown. The envelopes of Bikosoeca are almost entirely composed of ferric compounds and appear colourless or faintly yellowish. All four organisms exhibit various modifications according to the habitat conditions. The formation of stalks and envelopes respectively depends on the availability of the relevant metals in the form of lower oxides, but the organisms here described can also exist without producing these structures. The oxidation of ferrous and manganese compounds is catalysed by the cells of these flagellates, although the role of this process in the cellular metabolism is not known. Nutrition is holozoic, chiefly by ingestion of bacteria. Like other holozoic flagellates these organisms cannot exist in the presence of an abundant bacterial vegetation owing to the resulting lack of oxygen. They thrive in quiet, well-aerated waters, with a small content of organic substances, above zones in which Fe and Mn compounds are reduced and from which ferrous and manganous compounds diffuse to the overlying oxidation zone, where these flagellates deposit Fe"' and Mn'" in a morphologically defined form. ‘Iron’ flagellates generally live in association and competition with iron bacteria of the Leptothrix group, the removal of which produces much better growth. A description of the relevant flagellates and of their appearance under various conditions, as well as diagnoses of Siderodendron and Siphomonas , are given.


1991 ◽  
Vol 237 ◽  
Author(s):  
Michael A. Grinfeld

ABSTRACTIn the absence of surface tension and external force fields, the equilibrium between a hydrostatically stressed crystal and its melt is neutral with respect to the perturbations associated with particle transfer from one region of the boundary into another. However, under the action of arbitrary small nonhydrostatic components of the stress field in the elastic crystal, the neutral equilibrium is transformed to an unstable equilibrium [1]. This instability is very general in nature; for example, for it to be seen the liquid media need only to be able to dissolve the solid phase or in some way to assist the transport of particles along the crystal's surface. In contrast, the surface tension, roughly speaking, stabilizes the shape of the interphase boundary but it cannot suppress the instability generated by the nonhydrostatic components of the stress field in the region of sufficiently long perturbations. Until now the basic instability mechanism discussed here seems to have escaped the attention of theorists. This mechanism allows one to look in a completely new way at a broad range of phenomena. We discuss tentative manifestations and role of this instability in low temperature physics, in materials science, in theory of crystal growth, and, in particular, in theory of epitaxy and of the Stranski-Krastanow pattern of growth of thin crystalline films.


1968 ◽  
Vol 3 (1) ◽  
pp. 34-36
Author(s):  
A. N. Tynnyi ◽  
A. I. Soshko

1989 ◽  
Vol 39 (10) ◽  
pp. 1133-1137 ◽  
Author(s):  
Václav Foldyna ◽  
Jaroslav Purmenský

Sign in / Sign up

Export Citation Format

Share Document