scholarly journals One-exact approximate Pareto sets

Author(s):  
Arne Herzel ◽  
Cristina Bazgan ◽  
Stefan Ruzika ◽  
Clemens Thielen ◽  
Daniel Vanderpooten

AbstractPapadimitriou and Yannakakis (Proceedings of the 41st annual IEEE symposium on the Foundations of Computer Science (FOCS), pp 86–92, 2000) show that the polynomial-time solvability of a certain auxiliary problem determines the class of multiobjective optimization problems that admit a polynomial-time computable $$(1+\varepsilon , \dots , 1+\varepsilon )$$ ( 1 + ε , ⋯ , 1 + ε ) -approximate Pareto set (also called an $$\varepsilon $$ ε -Pareto set). Similarly, in this article, we characterize the class of multiobjective optimization problems having a polynomial-time computable approximate $$\varepsilon $$ ε -Pareto set that is exact in one objective by the efficient solvability of an appropriate auxiliary problem. This class includes important problems such as multiobjective shortest path and spanning tree, and the approximation guarantee we provide is, in general, best possible. Furthermore, for biobjective optimization problems from this class, we provide an algorithm that computes a one-exact $$\varepsilon $$ ε -Pareto set of cardinality at most twice the cardinality of a smallest such set and show that this factor of 2 is best possible. For three or more objective functions, however, we prove that no constant-factor approximation on the cardinality of the set can be obtained efficiently.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Oscar Brito Augusto ◽  
Fouad Bennis ◽  
Stephane Caro

Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined inn-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.


2004 ◽  
Vol 127 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Songqing Shan ◽  
G. Gary Wang

Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.


Sign in / Sign up

Export Citation Format

Share Document